Synthesis and Characterization of Magnetic Symmetric Nanodendimers Enhanced with Surface Active Amine Sites for the Removal of Organic Dyes

Document Type : Research Article


1 Department of Chemical Engineering, Shiraz University, Shiraz, I.R.IRAN.

2 Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 243 Stocking Hall, Ithaca, NY 14853, United States


This study includes the development of a new nanosorbent for the treatment of dye effluents. The designed and fabricated nanosorbent is comprised of a dendritic structure with symmetric primary amine active sites and a magnetic core. Employing various characterization techniques such as NMR, SEM, TEM, TGA, zeta potential, and CHN elemental analysis, the adsorption capacity of this material to remove methyl-orange dye has been investigated. The results reveal that the proposed nanosorbent offers an efficiency of approximately 68.9% with an adsorption rate of 166.2 g/min in the methyl-orange removal process. The rate constant obtained for methyl-orange adsorption on the nanodendrimer is higher than the previously reported ones, indicating a higher adsorption rate. The results of this new nanosorbent prove its high potential in adsorptive methyl-orange removal.


Main Subjects

 [1] Haque E., Lee J.E., Jang I.T., Hwang Y.K., Chang J.-S., Jegal J., Jhung S.H., Adsorptive Removal of Methyl Orange from Aqueous Solution with Metal-Organic Frameworks, Porous Chromium-Benzenedicarboxylates, Journal of hazardous materials, 181(1-3):  535-542 (2010).
[2] Panda S.K., Aggarwal I., Kumar H., Prasad L., Kumar A., Sharma A., Vo D.-V.N., Van Thuan D., Mishra V., Magnetite Nanoparticles as Sorbents for Dye Removal: A Review, Environmental Chemistry Letters, 19(3):  2487-2525 (2021).
[3] Dutta S., Gupta B., Srivastava S.K., Gupta A.K., Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review, Materials Advances:  (2021).
[4] Cheng J., Chang P.R., Zheng P., Ma X., Characterization of Magnetic Carbon Nanotube–Cyclodextrin Composite and Its Adsorption of Dye, Industrial & Engineering Chemistry Research, 53(4):  1415-1421 (2014).
[5] Saratale R.G., Saratale G.D., Chang J.-S., Govindwar S.P., Bacterial Decolorization and Degradation of Azo Dyes: A Review, Journal of the Taiwan Institute of Chemical Engineers, 42(1):  138-157 (2011).
[6] Marçal L., de Faria E.H., Saltarelli M., Calefi P.S., Nassar E.J., Ciuffi K.J., Trujillano R., Vicente M.A., Korili S.A., Gil A., Amine-Functionalized Titanosilicates Prepared by the Sol−Gel Process as Adsorbents of the Azo-Dye Orange II, Industrial & Engineering Chemistry Research, 50(1):  239-246 (2011).
[7] Bahrudin N.N., Nawi M.A., Jawad A.H., Sabar S., Adsorption Characteristics and Mechanistic Study of Immobilized Chitosan-Montmorillonite Composite for Methyl Orange Removal, Journal of Polymers and the Environment, 28(7):  1901-1913 (2020).
[9] Chung K.-T., The Significance of Azo-Reduction in the Mutagenesis and Carcinogenesis of Azo Dyes, Mutation Research/Reviews in Genetic Toxicology, 114(3):  269-281 (1983).
[10] Lü X.-f., Ma H.-r., Zhang Q., Du K., Degradation of Methyl Orange by Uv, O 3 and Uv/O 3 Systems: Analysis of the Degradation Effects and Mineralization Mechanism, Research on Chemical Intermediates, 39(9):  4189-4203 (2013).
[11] Nguyen V.N., Tran D.T., Nguyen M.T., Le T.T.T., Ha M.N., Nguyen M.V., Pham T.D., Enhanced Photocatalytic Degradation of Methyl Orange Using Zno/Graphene Oxide Nanocomposites, Research on Chemical Intermediates, 44(5):  3081-3095 (2018).
[12] Tang Y., Wang X., Zhu L., Removal of Methyl Orange from Aqueous Solutions with Poly (Acrylic Acid-Co-Acrylamide) Superabsorbent Resin, Polymer bulletin, 70(3):  905-918 (2013).
[13] Xu D., Cheng F., Zhang Y., Song Z., Degradation of Methyl Orange in Aqueous Solution by Microwave Irradiation in the Presence of Granular-Activated Carbon, Water, Air, & Soil Pollution, 225(6):  1983 (2014).
[14] Sun X., Zhou Y., Zheng X., Comparison of Adsorption Behaviors of Fe-La Oxides Co-Loaded Mgo Nanosheets for the Removal of Methyl Orange and Phosphate in Single and Binary Systems, Journal of Environmental Chemical Engineering, 8(5):  104252 (2020).
[16] Simonescu C.M., Tătăruş A., Culiţă D.C., Stănică N., Ionescu I.A., Butoi B., Banici A.-M., Comparative Study of Cofe2o4 Nanoparticles and CoFe2O4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption, Nanomaterials, 11(3): 711 (2021).
[17] Kumar R., Kumar G., Umar A., Zinc Oxide Nanomaterials for Photocatalytic Degradation of Methyl Orange: A Review, Nanoscience and Nanotechnology letters, 6(8): 631-650 (2014).
[18] Wang Z., Li Y., Xie X., Wang Z., Bifunctional MnFe2O4/Chitosan Modified Biochar Composite for Enhanced Methyl Orange Removal Based on Adsorption and Photo-Fenton Process, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 613: 126104 (2021).
[19] Gupta V., Application of Low-Cost Adsorbents for Dye Removal–a Review, Journal of environmental management, 90(8):  2313-2342 (2009).
[20] Sudha M., Saranya A., Selvakumar G., Sivakumar N., Microbial Degradation of Azo Dyes: A Review, International Journal of Current Microbiology and Applied Sciences, 3(2):  670-690 (2014).
[21] Forgacs E., Cserháti T., Oros G., Removal of Synthetic Dyes from Wastewaters: A Review, Environment international, 30(7):  953-971 (2004).
[22] Yuan D., Zhou L., Fu D., Adsorption of Methyl Orange from Aqueous Solutions by Calcined Znmgal Hydrotalcite, Applied Physics A, 123(2):  146 (2017).
[23] Yusuf M., Elfghi F., Zaidi S.A., Abdullah E., Khan M.A., Applications of Graphene and Its Derivatives as an Adsorbent for Heavy Metal and Dye Removal: A Systematic and Comprehensive Overview, RSC Advances, 5(62):  50392-50420 (2015).
[24] He C., Hu X., Anionic Dye Adsorption on Chemically Modified Ordered Mesoporous Carbons, Industrial & Engineering Chemistry Research, 50(24):  14070-14083 (2011).
[26] Annadurai G., Juang R.-S., Lee D.-J., Use of Cellulose-Based Wastes for Adsorption of Dyes from Aqueous Solutions, Journal of hazardous materials, 92(3):  263-274 (2002).
[27] Li L., Li X., Yan C., Guo W., Yang T., Fu J., Tang J., Hu C., Optimization of Methyl Orange Removal from Aqueous Solution by Response Surface Methodology Using Spent Tea Leaves as Adsorbent, Frontiers of Environmental Science & Engineering, 8(4):  496-502 (2014).
[28] Vakili M., Rafatullah M., Salamatinia B., Abdullah A.Z., Ibrahim M.H., Tan K.B., Gholami Z., Amouzgar P., Application of Chitosan and Its Derivatives as Adsorbents for Dye Removal from Water and Wastewater: A Review, Carbohydrate polymers, 113:  115-130 (2014).
[29] Huang J.-H., Huang K.-L., Liu S.-Q., Wang A.-T., Yan C., Adsorption of Rhodamine B and Methyl Orange on a Hypercrosslinked Polymeric Adsorbent in Aqueous Solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330(1):  55-61 (2008).
[30] Crini G., Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review, Bioresource technology, 97(9):  1061-1085 (2006).
[31] Rocher V., Siaugue J.-M., Cabuil V., Bee A., Removal of Organic Dyes by Magnetic Alginate Beads, Water research, 42(4-5):  1290-1298 (2008).
[32] Asuha S., Gao Y., Deligeer W., Yu M., Suyala B., Zhao S., Adsorptive Removal of Methyl Orange Using Mesoporous Maghemite, Journal of Porous Materials, 18(5):  581-587 (2011).
[34] Nazir M.A., Najam T., Zarin K., Shahzad K., Javed M.S., Jamshaid M., Bashir M.A., Shah S.S.A., Rehman A.U., Enhanced Adsorption Removal of Methyl Orange from Water by Porous Bimetallic Ni/Co MOF Composite: A Systematic Study of Adsorption Kinetics, Inter. Jour. Envir. Anal. Chem.  1-16 (2021).
[35] Ansari R., Mosayebzadeh Z., Application of Polyaniline as an Efficient and Novel Adsorbent for Azo Dyes Removal from Textile Wastewaters, Chemical Papers, 65(1):  1-8 (2011).
[36] Ahmed S., Rehman H.U., Ali Z., Qadeer A., Haseeb A., Ajmal Z., Solvent Assisted Synthesis of Hierarchical Magnesium Oxide Flowers for Adsorption of Phosphate and Methyl Orange: Kinetic, Isotherm, Thermodynamic and Removal Mechanism, Surfaces and Interfaces, 23:  100953 (2021).
[37] Gong J., Gao X., Li M., Nie Q., Pan W., Liu R., Dye Adsorption on Electrochemical Exfoliated Graphene Oxide Nanosheets: Ph Influence, Kinetics and Equilibrium in Aqueous Solution, International journal of environmental science and technology, 14(2):  305-314 (2017).
[38] Saha T.K., Bhoumik N.C., Karmaker S., Ahmed M.G., Ichikawa H., Fukumori Y., Adsorption of Methyl Orange onto Chitosan from Aqueous Solution, Journal of water resource and protection, 2(10):  898 (2010).
[39] Ni Z.-M., Xia S.-J., Wang L.-G., Xing F.-F., Pan G.-X., Treatment of Methyl Orange by Calcined Layered Double Hydroxides in Aqueous Solution: Adsorption Property and Kinetic Studies, Journal of Colloid and Interface Science, 316(2):  284-291 (2007).
[40] Zheng Y.-M., Xiong L., Zhang W.-D., Highly Efficient Removal of Methyl Orange in Aqueous Solutions by Calcined-Layered Double Hydroxides, Research on Chemical Intermediates, 41(9):  6803-6814 (2015).
[41] Singh K.P., Mohan D., Sinha S., Tondon G., Gosh D., Color Removal from Wastewater Using Low-Cost Activated Carbon Derived from Agricultural Waste Material, Industrial & engineering chemistry research, 42(9):  1965-1976 (2003).
[42] Luo X., Zhang L., High Effective Adsorption of Organic Dyes on Magnetic Cellulose Beads Entrapping Activated Carbon, Journal of hazardous materials, 171(1-3):  340-347 (2009).
[44] Beltrán-Heredia J., Sánchez-Martín J., Delgado-Regalado A., Removal of Carmine Indigo Dye with Moringa Oleifera Seed Extract, Industrial & Engineering Chemistry Research, 48(14):  6512-6520 (2009).
[45] Metin A.Ü., Çiftçi H., Alver E., Efficient Removal of Acidic Dye Using Low-Cost Biocomposite Beads, Industrial & Engineering Chemistry Research, 52(31):  10569-10581 (2013).
[47] Yen C.-H., Lien H.-L., Chung J.-S., Yeh H.-D., Adsorption of Precious Metals in Water by Dendrimer Modified Magnetic Nanoparticles, Journal of hazardous materials, 322:  215-222 (2017).
[48] Juris A., 6 Recent Developments in Photo-and Redox-Active Dendrimers, Annual Reports Section" C"(Physical Chemistry), 99:  177-241 (2003).
[49] Gao F., Pan B.-F., Zheng W.-M., Ao L.-M., Gu H.-C., Study of Streptavidin Coated onto Pamam Dendrimer Modified Magnetite Nanoparticles, Journal of Magnetism and Magnetic materials, 293(1):  48-54 (2005).
[50] Dirksen A., Zuidema E., Williams R., De Cola L., Kauffmann C., Vögtle F., Roque A., Pina F., Photoactivity and Ph Sensitivity of Methyl Orange Functionalized Poly (Propyleneamine) Dendrimers, Macromolecules, 35(7):  2743-2747 (2002).
[51] Kim L.-J., Jang J.-W., Park J.-W., Nano TiO2-Functionalized Magnetic-Cored Dendrimer as a Photocatalyst, Applied Catalysis B: Environmental, 147:  973-979 (2014).
[52] Tomalia D.A., Naylor A.M., Goddard III W.A., Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter, Angewandte Chemie International Edition in English, 29(2):  138-175 (1990).
[53] Newkome G.R., Moorefield C.N., Vögtle F., "Dendrimers and Dendrons: Concepts, Syntheses, Applications", Wiley-VCH Verlag GmbH, (2001).
[54] Crooks R.M., Zhao M., Sun L., Chechik V., Yeung L.K., Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis, Accounts of chemical research, 34(3):  181-190 (2001).
[55] Vunain E., Mishra A., Mamba B., Dendrimers, Mesoporous Silicas and Chitosan-Based Nanosorbents for the Removal of Heavy-Metal Ions: A Review, International journal of biological macromolecules, 86:  570-586 (2016).
[56] Rajesh R., Kumar S.S., Venkatesan R., Efficient Degradation of Azo Dyes Using Ag and Au Nanoparticles Stabilized on Graphene Oxide Functionalized with Pamam Dendrimers, New Journal of Chemistry, 38(4):  1551-1558 (2014).
[58] Arshadi M., Mousavinia F., Khalafi-Nezhad A., Firouzabadi H., Abbaspourrad A., Adsorption of Mercury Ions from Wastewater by a Hyperbranched and Multi-Functionalized Dendrimer Modified Mixed-Oxides Nanoparticles, Journal of colloid and interface science, 505:  293-306 (2017).
[59] Hui C., Shen C., Tian J., Bao L., Ding H., Li C., Tian Y., Shi X., Gao H.-J., Core-Shell Fe3O4@SiO2 Nanoparticles Synthesized with Well-Dispersed Hydrophilic Fe3O4 Seeds, Nanoscale, 3(2):  701-705 (2011).
[60] Hui C., Shen C., Tian J., Bao L., Ding H., Li C., Tian Y., Shi X., Gao H.-J., Core-Shell Fe3O4@SiO2 Nanoparticles Synthesized with Well-Dispersed Hydrophilic Fe3O4 Seeds, Nanoscale, 3(2):  701-705 (2011).
[61] Arshadi M., Taghvaei H., Abdolmaleki M., Lee M., Eskandarloo H., Abbaspourrad A., Carbon Dioxide Absorption in Water/Nanofluid by a Symmetric Amine-Based Nanodendritic Adsorbent, Applied Energy, 242:  1562-1572 (2019).
[63] Arshadi M., Eskandarloo H., Karimi Abdolmaleki M., Abbaspourrad A., A Biocompatible Nanodendrimer for Efficient Adsorption and Reduction of Hg (II), ACS Sustainable Chemistry & Engineering, 6(10):  13332-13348 (2018).
[64] Arshadi M., Abdolmaleki M., Eskandarloo H., Abbaspourrad A., A Supported Dendrimer with Terminal Symmetric Primary Amine Sites for Adsorption of Salicylic Acid, Journal of colloid and interface science, 540:  501-514 (2019).
[65] Kierulf A., Azizi M., Eskandarloo H., Whaley J., Liu W., Perez-Herrera M., You Z., Abbaspourrad A., Starch-Based Janus Particles: Proof-of-Concept Heterogeneous Design Via a Spin-Coating Spray Approach, Food Hydrocolloids, 91:  301-310 (2019).
[66] Azizi M., Kierulf A., Lee M.C., Abbaspourrad A., Improvement of Physicochemical Properties of Encapsulated Echium Oil Using Nanostructured Lipid Carriers, Food chemistry, 246:  448-456 (2018).
[67] Zhang X., Qin Y., Zhang G., Zhao Y., Lv C., Liu X., Chen L., Preparation of Pvdf/Hyperbranched-Nano-Palygorskite Composite Membrane for Efficient Removal of Heavy Metal Ions, Polymers, 11(1):  156 (2019).
[68] Valdes Lizama O., Vilos C., Durán-Lara E., Techniques of Structural Characterization of Dendrimers, Current Organic Chemistry, 20(24):  2591-2605 (2016).
[69] Zhou F., Man R., Huang J., Hyper-Cross-Linked Polymers Functionalized with Primary Amine and Its Efficient Adsorption of Salicylic Acid from Aqueous Solution, The Journal of Chemical Thermodynamics, 131:  387-392 (2019).
[70] Yang Q., Ren S., Zhao Q., Lu R., Hang C., Chen Z., Zheng H., Selective Separation of Methyl Orange from Water Using Magnetic Zif-67 Composites, Chemical Engineering Journal, 333:  49-57 (2018).
[71] Bhatti H.N., Akhtar N., Saleem N., Adsorptive Removal of Methylene Blue by Low-Cost Citrus Sinensis Bagasse: Equilibrium, Kinetic and Thermodynamic Characterization, Arabian Journal for Science and Engineering, 37(1):  9-18 (2012).
[72] Chern J.-M., Wu C.-Y., Desorption of Dye from Activated Carbon Beds: Effects of Temperature, Ph, and Alcohol, Water research, 35(17):  4159-4165 (2001).
[73] Mittal A., Mittal J., Malviya A., Kaur D., Gupta V., Adsorption of Hazardous Dye Crystal Violet from Wastewater by Waste Materials, Journal of Colloid and Interface Science, 343(2):  463-473 (2010).
[74] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids, Journal of the American chemical society, 38(11):  2221-2295 (1916).
[75] Zhuannian L., Anning Z., Guirong W., Xiaoguang Z., Adsorption Behavior of Methyl Orange onto Modified Ultrafine Coal Powder, Chinese Journal of Chemical Engineering, 17(6):  942-948 (2009).
[76] Jalil A.A., Triwahyono S., Adam S.H., Rahim N.D., Aziz M.A.A., Hairom N.H.H., Razali N.A.M., Abidin M.A., Mohamadiah M.K.A., Adsorption of Methyl Orange from Aqueous Solution onto Calcined Lapindo Volcanic Mud, Journal of Hazardous Materials, 181(1-3):  755-762 (2010).
[77] Chen S., Zhang J., Zhang C., Yue Q., Li Y., Li C., Equilibrium and Kinetic Studies of Methyl Orange and Methyl Violet Adsorption on Activated Carbon Derived from Phragmites Australis, Desalination, 252(1-3):  149-156 (2010).
[78] Yao Y., Bing H., Feifei X., Xiaofeng C., Equilibrium and Kinetic Studies of Methyl Orange Adsorption on Multiwalled Carbon Nanotubes, Chemical Engineering Journal, 170(1):  82-89 (2011).
[79] Ma J., Yu F., Zhou L., Jin L., Yang M., Luan J., Tang Y., Fan H., Yuan Z., Chen J., Enhanced Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution by Alkali-Activated Multiwalled Carbon Nanotubes, ACS applied materials & interfaces, 4(11):  5749-5760 (2012).
[80] Mohammadi N., Khani H., Gupta V.K., Amereh E., Agarwal S., Adsorption Process of Methyl Orange Dye onto Mesoporous Carbon Material–Kinetic and Thermodynamic Studies, Journal of Colloid and Interface Science, 362(2):  457-462 (2011).
[82] Chen H., Zhao J., Wu J., Dai G., Isotherm, Thermodynamic, Kinetics and Adsorption Mechanism Studies of Methyl Orange by Surfactant Modified Silkworm Exuviae, Journal of hazardous materials, 192(1):  246-254 (2011).
[83] Cheah W., Hosseini S., Khan M.A., Chuah T., Choong T.S., Acid Modified Carbon Coated Monolith for Methyl Orange Adsorption, Chemical Engineering Journal, 215:  747-754 (2013).
[84] Zhao D., Zhang W., Chen C., Wang X., Adsorption of Methyl Orange Dye onto Multiwalled Carbon Nanotubes, Procedia Environmental Sciences, 18:  890-895 (2013).
[85] Shen J., Li Z., Wu Y.-n., Zhang B., Li F., Dendrimer-Based Preparation of Mesoporous Alumina Nanofibers by Electrospinning and Their Application in Dye Adsorption, Chemical Engineering Journal, 264:  48-55 (2015).