Molecular Dynamics Simulation of Oxygen and Nitrogen Mixture on Carbon Nanocone and Nanotube

Document Type : Research Article


Department of Physics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, I.R. IRAN


Adsorption and storage of oxygen and nitrogen with 240º carbon Nanocone were studied and results were compared with (10,10) carbon nanotube. Adsorption amount of gases at constant temperature and different pressures was calculated by using the molecular dynamics method. The simulation results indicated that gases were adsorbed on external and internal surfaces of carbon Nanocone and carbon nanotube. Adsorption amount was increased and finally saturated by increasing pressure. It was found that oxygen adsorption was higher than nitrogen adsorption on both structures. Also, carbon Nanocones showed higher adsorption and separation capacity than carbon nanotubes. Therefore, carbon nanocones are a proper candidate for storage and separation of oxygen of the air.


Main Subjects

[1] Iijima S., Helical Microtubules of Graphitic Carbon, Nature, 354: 56-58 (1991).
[2] Chen J.L., Su M.H., Hwang C.C., Lu J.M., Tsai C.C., Low-Energy Electronic States of Carbon Nanocones in an Electric Field, Nano. Micro. Lett., 2: 121-125 (2010).
[3] Krisshnan A., Dujardin E., Treacy M.M.J., Hugdahl J., Lynum S., Ebbesen T.W., Graphitic Cones and the Nucleation of Curved Carbon Surfaces, Nature, 388: 451- 454 (1997).
[4] Rasoolzadeh M., Fatemi S., Gholamhosseini M. Moosaviyan M.A., Study of Methane Storge and Adsorption Equilibria in Multi-Walled Carbon Nanotubes, Iran. J. Chem. Chem. Eng. (IJCCE), 27(3): 127-134 (2008).
[5] Zambano A.J.,  Talapatra S., Lafdi K., Takashi K., Adsorbate Binding Energy and Adsorption Capacity of Xenon on Carbon Nanohorns, Nanotechnology, 13: 201-204 (2012).
[6] Cabria I., Lopez M.J., Alonso J.A., The Optimum Average Nanopore Size for Hydrogen Storage in Carbon Nanoporous Materials, Carbon, 45: 2649-2658 (2007).
[7] بلبل امیری، محدثه؛ ارشدی، ستار؛ عزیزی، زهرا؛ بررسی برهم کنش گاز خردل بر روی نانولوله های آلومینیوم – نیترید زیگزاگ (4،0)، (5،0) و (6،0)، نشریه شیمی و مهندسی شیمی ایران، (4)33: 31 تا 41 (1393). 
[8] Lithoxoos G.P., Labropoulos A., Peristeras L.D., Kanellopoulos N., Samios J., Economou I.G., Adsorption of N2, CH4, CO and CO2 Gases in Single Walled Carbon Nanotubes: a Combined Experimental and Monte Carlo Molecular Simulation Study, J. Supercritical Fluids, 55: 510-523 (2010).
[9] Majidi R., Ghafoori T., Study of Neon Adsorption on Carbon Nanocones Using Molecular Dynamics Simulation, Physica B, 405: 2144-2148 (2010).
[10] Majidi R., Helium Adsorption on Carbon Nanocones with Different Disclination Angle: Molecular Dynamics Simualtion, Nano Brief Reports and Reviews, 7: 1250023 (1-5) (2012).
[11] Majidi R., Taghiyari H.R, Ekhlasi M., Adsorption Patterns of Helium on Carbon and Cellulose Nanotubes: Molecular Dynamics Simualtions, Nano Brief Reports and Reviews, 12: 1750036 (1-11) (2017).
[12] Gotzias A., Heiberg-Andersen H., Kainourgiakis M.E., Steriotis Th., Grand Canonical Monte Carlo Simulations of Hydrogen Adsorption in Carbon Cones, Appl. Surf. Sci., 256: 5226-5228 (2010).
[13] Gotzias A., Heiberg-Andersen H., Kainourgiakis M., Steriotis Th., A Grand Canonical Monte Carlo Study of Hydrogen Adsorption in Carbon Nanohorns and Nanocones at 77 K, Carbon, 49: 2715-2717 (2011).
[15] Foroutan M., Nasrabadi A.T., Adsorption Behavior of Ternary Mixtures of Noble Gases Inside Single-Walled Carbon Nanotube Bundles, Chem. Phys. Lett., 496: 213-217 (2010).
[19] Bonakala S., Balasubramanian S., Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture, J. Chem. Sci. 127: 1687-1699 (2015).
[20] Ponder J.W., “Tinker: Software Tools for Molecular Design”, Version 4.2, Saint Louis. MO. (2001).
[21] Beeman D., Some Multistep Methods for Use in Molecular Dynamics Calculations, J. Comp. Phys. 20: 130-139 (1976).
[22] Rafati A.A., Hashemianzadeh S.M., Bolboli Z., Naghshineh N., Canonical Monte Carlo Simulation of Adsorption of O2 and N2 Mixture on Single Walled Carbon Nanotube at Different Temperatures and Pressures, J. Comp. Chem., 31: 1443-9 (2010).