Thermo Economic Analyses of an Organic Rankine Cycle to Produce Combined Heat and Power Based on Various Energy Resources in Ardebil State

Document Type : Research Article


1 Department of Mechanical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN

2 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, I.R. IRAN


In this research, thermodynamically design and also technical, economic and environmental studies of an organic Rankine cycle have been performed to produce combined heat and power (CHP). Along with the technical evaluation of affecting parameters on the cycle, the importance and effectiveness of each parameter are considered too. Various type of energy sources such as solar, biomass and geothermal as renewable resources based on Ardebil state conditions and natural gas as fossil fuel have been studied and their generated power prices have been compared. Also, it is tried that by using a proposed two-step condenser, in order to use the outlet heat of condenser, its temperature keeps high as much as possible such that the hot flow is useable to produce heat in addition to power. With comparing the thermal and exergy efficiencies for power generation and cogeneration of heat and power (CHP) cases it is observed that because of optimized usage of energy resources in the CHP, the efficiencies increase 5.71% and 5.45% from thermal and exergy standpoints, respectively. As well as from an environmental perspective, it is estimated that annual 3.297×106 dollars saving from not impose external costs will be made by CHP in the renewable energy resource systems.


Main Subjects

[1] Borsukiewicz-Gozdur A., Dual-fluid-hybrid Power Plant co-Powered by Low-Temperature Geothermal Water, International Journal of Geothermics, 30:170- 176 (2010).
[2] Qiu G., Shao Y., Li J., Liu H., Riffat S. B., 2012. Experimental Investigation of a Biomass-Fired ORC-Based Micro-CHP for Domestic Applications. Journal of Fuel, 96:374–382 (2010).
[3] Astolfi M., Xodo L., Romano M., Macchi E., Technical and Economical Analysis of a Solar–Geothermal Hybrid Plant Based on an Organic Rankine Cycle, International Journal of Geothermics, 40:58-68 (2011).
[4] Farrokhi M., Noie S.H., Akbarzadeh A. A., Preliminary Experimental Investigation of a Natural Gas-Fired ORC-Based Micro-CHP System for Residential Buildings, Journal of Applied Thermal Engineering, 69:221-229 (2014).
[5] Preibinger M., Heberle F., Bruggemann D., Thermodynamic Analysis of Double-Stage Biomass Fired Organic Rankine Cycle for Micro-Cogeneration, International Journal of Energy Research, 36(8): 943-952 (2012). DOI: 10.1002/er.1952
[6] Tempesti D., Manfrida G., Fiaschi D., Thermodynamic Analysis of Two micro CHP Systems Operating with Geothermal and Solar Energy, International Journal of Applied Energy, 97: 609- 617 (2012).
[7] Tempesti D., Fiaschi D., Thermo-Economic Assessment of a Micro CHP System Fuelled by Geothermal and Solar Energy, International Journal of Energy, 58:45-51 (2013).
[8] Ruzzenenti F., Bravi M., D. Tempesti, Salvatici E., Manfrida G., Basosi R., Evaluation of the Environmental Sustainability of a Micro CHP System Fueled by Low-Temperature Geothermal and Solar Energy, International Journal of Energy Conversion and Management, 78: 611–616 (2014).
[9] Calise F., Dentice d’Accadia M., Vicidomini M., Scarpellino M., Design and Simulation of a Prototype of a Small-Scale Solar CHP System Based on Evacuated Flat-Plate Solar Collectors and Organic Rankine Cycle, International Journal of Energy Conversion and Management, 90:347-363 (2015).
[10] Habka M., Ajib S., Evaluation of Mixtures Performances in Organic Rankine Cycle When Utilizing the Geothermal Water with and without Cogeneration, International Journal of Applied Energy. 154:567-576 (2015).
[11] Liu H., Shao Y., Li J., A Biomass-Fired Micro-Scale CHP System with Organic Rankine Cycle (ORC) e Thermodynamic Modelling Studies, International Journal of Biomass and Bioenergy, 35:3985-3994 (2011).
[12] Maraver D., Uche J., Royo J., Assessment of High Temperature Organic Rankine Cycle Engine for Polygeneration with MED Desalination: A Preliminary Approach, International Journal of Energy Conversion and Management, 53:108–117(2012).
[13] Taljan G., Verbi G., Pantos M., Sakulin M., Fickert L., Optimal Sizing of Biomass-Fired Organic Rankine Cycle CHP System with Heat Storage, International Journal of Renewable Energy, 41:29-38 (2012).
[14] Qiu K., Hayden A. C. S., Integrated Thermoelectric and Organic Rankine Cycles for Micro-CHP Systems, International Journal of Applied Energy, 97:667-672 (2012).
[16] Habka M., Ajib S., Studying Effect of Heating Plant Parameters on Performances of a Geothermal-Fuelled Series Cogeneration Pant Based on Organic Rankine Cycle, International Journal of Energy Conversion and Management, 78:324–337 (2014).
[18] Wu B., Wang L., Comparable Analysis Methodology of CCHP Based on Distributed Energy System, International Journal of Energy Conversion and Management, 88:863–871 (2014).
[20] Peris B., Navarro-Esbrí J., Molés F., Martí J. P., Mota-Babiloni A., Experimental Characterization of an Organic Rankine Cycle (ORC) for Micro-Scale CHP Applications, International Journal of Applied Thermal Engineering, 79:1-8 (2015).
[21] Prando D., Renzi M., Gasparella A., Baratieri M., Monitoring of the Energy Performance of a District Heating CHP Plant Based on Biomass Boiler and ORC Generator, International Journal of Applied Thermal Engineering, 79: 98-107 (2015).
[22] Peris B., Navarro-Esbrí J., Molés F., González M., A. Mota-Babiloni, Experimental Characterization of an ORC (Organic Rankine Cycle) for Power and CHP (Combined Heat and Power) Applications from Low Grade Heat Sources, International Journal of Energy, 82: 269-276 (2015).
[23] Soltani R., Dincer I., Rosen M. A., Thermodynamic Analysis of a Novel Multigeneration Energy System Based on Heat Recovery from a Biomass CHP Cycle, International Journal of Applied Thermal Engineering, 89:90-100 (2015).
[24] Ahmadi P., "Modeling, Analysis and Optimization of Integrated Energy Systems for Multigeneration Purposes", Thesis, Faculty of Engineering and Applied Science University of Ontario Institute of Technology (2013).
[26] Li W., Feng X., Yu L. J., Xu J., Effects of Evaporating Temperature and Internal Heat Exchanger on Organic Rankine Cycle, International Journal of Applied Thermal Engineering, 31(17-18):4014-4023 (2011).
[27] Ameri M., Ahmadi P., Hamidi A., Energy, Exergy and Exergoeconomic Analysis of a Steam Power plant: A Case Study, International Journal of energy research, 33:499–512 (2009).
[28] پاکدل، علی؛ جعفری نصر، محمدرضا؛ شبیه­سازی و بررسی پارامتری چرخه تجمیعی متمرکز کننده­های سهموی خورشیدی و چرخه آلی رانکین برای تولید توان الکتریکی، نشریه شیمی و مهندسی شیمی ایران، (3)33: 65 تا 83 (1393).
[29] Ferrara F., Gimelli A., Luongo A., Small-scale Concentrated Solar Power (CSP) Plant: ORCs Comparison for Different Organic Fluids, International Journal of Energy Procedia, 45:217-226, (2014).
[30] Mehrnia V., haghigh K. R., Solar Field Thermo-Economical Optimization of Yazd Integrated Solar Combined Cycle (ISCC), Modares Mechanical Engineering, 14(2):117-127 (2014) (in Persian).
[31] Mehmood S., Reddy B.V., Rosen M.A., Energy Analysis of a Biomass Co-Firing Based Pulverized Coal Power Generation System, International Journal of Sustainability, 4:462-490 (2012).
[32] Bhattacharyya S. C., Viability of off-Grid Electricity Supply Using Rice Husk: A Case Study from South Asia, International Journal of Biomass and bio Energy, 68:44-54, (2014).
[33] Obidzinski S., Pelletization of Biomass Waste whith Potato Pulp Content, International Journal of Agrophysics, 28: 85-91 (2014).
[34] Encinar J. M., Gonzalez J. F., Martinez G., Energetic Use of Tomato Plant Waste, International Journal of Fuel Processing Technology, 89:1193-1200 (2008).
[35] Zhou C., Doroodchi E., Moghtaderi B., An in-Depth Assessment of Hybrid Solar–Geothermal Power Generation, International Journal of Energy Conversion and Management, 74:88-101 (2013).
[36] Last Accessed Feb 17, (2016).
[37] Bejan A., Tsatsaronis G., Moran M., “Thermal Design and Optimization”,Wiley-Interscience Publication(1996).
[38] Khanmohammadi Sh., Atashkari K., Kouhikamali R., Performance Assessment and Multi-Objective Optimization of a Trigeneration System with Modified Biomass Gasification Model, Modares Mechanical Engineering, 15(9):209-222 (2015) (In Persian).
[39] Vassilev S.V., Vassileva C.G., A New Approach for the Combined Chemical and Mineral Classification of the Inorganic Matter in Coal, International Journal of Fuel, 88:235-245 (2009).
[40] Larjol A., Organic Rankine Cycle (ORC) Based Waste Heat/Waste Fuel Recovery Systems for Small Combined Heat and Power (CHP) Applications, International Journal of Energy, A volume in Wood head Publishing Series in Energy, 206-232 (2011).
[41] Lecompte S., Huisseune H., De Broek M.V., Vanslambrouck B., De Paepe M., Review of Organic Rankine Cycle (ORC) Architectures for Waste Heat Recovery, International Journal of Renewable and Sustainable Energy Reviews, 111:871-881 (2015).
[42] ترکی، معصومه؛ عابدی، زهرا؛ هزینه­های خارجی تولید برق از نیروگاه­های فسیلی: به صورت موردی ایران، نشریه انسان و محیط زیست، (4)9: 3 تا 6 (1390).
[43] ترازنامه­ی انرژی ایران در سال 1391، معاونت امور برق و انرژی، دفتر برنامه­ریزی کلان برق و انرژی (1392).
[44]دستورالعمل زیست محیطی شرکت­های گاز، HSE شرکت ملی گاز ایران (1389).
[45] Yari M., Performance Analysis of the Different Organic Rankine Cycles (ORCs) Using Dry Fluids, International Journal of Exergy, 6(3): 323-342 (2009).
[46] Halil Yılmaz I., Sait Söylemez M., Thermo-Mathematical Modeling of Parabolic Trough Collector, International Journal Energy Conversion and Management, 88: 768-784 (2014).