روش موثر و سازگار با محیط زیست جهت تهیه آمیدوآلکیل نفتول ها در شرایط بدون حلال با استفاده از کاتالیزگر جدید گرافن اکسید عامل‌دار شده با 2-آمینوبنزوتیازول و فسفریک اسید

نوع مقاله : علمی-پژوهشی

نویسندگان

بخش علوم پایه، دانشکده شیمی، دانشگاه پیام نور، تهران، ایران

چکیده

در این کار پژوهشی کاتالیزگر گرافن اکسید عامل دار شده با 2-آمینوبنزوتیازول و فسفریک اسید به عنوان کاتالیزگر ناهمگن جهت تهیه آمیدوآلکیل نفتول ها استفاده شد. نخست گرافن اکسید تک لایه نانوساختار به روش اصلاح شده هامر از اکسایش در حضور اکسنده های قوی مانند سولفوریک اسید ، سدیم نیترات و پتاسیم پرمنگنات تهیه شد و در مرحله بعد بوسیله 2-آمینوبنزوتیازول عامل دار شد. جهت افزایش خواص کاتالیزگری فسفریک اسید بر روی محصول حاصل قرار داده شد. شناسایی کاتالیزگر و حدواسط گرافن اکسید عامل دار شده توسط روش های طیف سنجی مادون قرمز تبدیل فوریه، پراش اشعه ایکس، میکروسکوپ الکترونی گسیل میدانی، طیف سنجی پراش انرژی اشعه ایکس و آنالیز گرمایی وزن سنجی انجام شد. جهت بررسی کارایی کاتالیزگر در تهیه ترکیبات آلی، واکنش تهیه آمیدوآلکیل نفتول ها در حضور کاتالیزگر در شرایط بدون حلال از واکنش سه جزئی 2-نفتول، آلدئیدها و آمیدها (اوره و استامید) بررسی شد. بمنظور بدست آوردن شرایط بهینه، واکنش در حضور 4-کلروبنزآلدئید با تغییر مقدار کاتالیزگر، دما، زمان و حلال انجام شد که در بهترین حالت مقدار 02/0 گرم کاتالیزگر در زمان 20 دقیقه، شرایط بدون حلال و دمای 70 درجه سانتیگراد محصول با بازده 95 درصد بدست آمد.  واکنش در حضور آلدئیدها با گروه های عاملی گوناگون با بازده مناسب انجام شد.  کاتالیزگر و روش مورد استفاده سازگار با محیط زیست بوده و از مزایای آنها در دسترس و غیر سمی بودن، عدم استفاده از حلال، زمان کم واکنش، خالص سازی آسان و عدم تولید محصولات جانبی می باشد.

کلیدواژه‌ها

موضوعات


[1] Zimmerman J.B., Anastas P.T., Erythropel H.C., Leitner W., Designing for a Green Chemistry Future, Science, 367(6476): 397-400 (2020).
[2] Sheldon R.A., Metrics of Green Chemistry and Sustainability: Past, Present, and Future, ACS Sustainable Chemistry & Engineering, 6(1): 32-48 (2018).
[3] صفایی م.، معینی مهر م.، سنتز چند جزئی مشتق های زانتن با استفاده از تانیک اسید و آلژینیک اسید به عنوان کاتالیست های طبیعی، شیمی و مهندسی شیمی ایران، (4)39: 73-86 (1399).
[4]  Rai V.K., Mahata S., Kashyap H., Singh M., Rai A., Bio-Reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis, Curr. Organ. Synth., 17(3): 164-191 (2020).
[5] ژیانی م.، قاسمی شرودانی ز.، کمالی س.، ساخت، بهینه سازی و ارزیابی الکتروکاتالیست آهن کبالت برروی بستر گرافن در واکنش آزادسازی هیدروژن، شیمی و مهندسی شیمی ایران، (3)38: 117-125 (1398).
[6] حسینی س. ق.، خدادادی پور ز.، سنتز نانوکامپوزیت گرافن Fe3O4/ و بررسی فعالیت کاتالیستی آن بر رفتار سوختن آمونیوم پرکلرات، نشریه شیمی و مهندسی شیمی ایران، (3)37: 71-79 (1397).
[7] قاسمی میر ش.، حسینی زوارمحله س.، حسن پور ف.، نبی پور ش.، حسگر آمپرومتری بیسفنول A بر پایه نانوورقه های گرافنی دارای نانوذره های دو فلزی پلاتین-پالادیوم، شیمی و مهندسی شیمی ایران، (2)39:  132-119 (1399).
[10] Georgakilas V., Tiwari J.N., Kemp K.C., Perman J.A., Bourlinos A.B., Kim K.S., Zboril R., Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications, Chemical Reviews, 116(9): 5464-5519 (2016).
[12] Barrera E.G., dos Santos J.H., Designing Polyethylene Characteristics by Modification of the Support for FI Catalyst, Molecular Catalysis, 434: 1-6 (2017).
[13] Keane M.A., Catalytic Transformation of Waste Polymers to Fuel Oil, ChemSusChem: Chemistry & Sustainability Energy & Materials, 2(3): 207-214 (2009).
[14] Boudebbous K., Boulebd H., Boulcina R., Bendjeddou L., Bensouici C., Merazig H., Debache A., Synthesis, Crystal Structure, Biological Evaluation, Docking Study, and DFT Calculations of 1-Amidoalkyl-2-Naphthol Derivative, Journal of Molecular Structure, 1212: 128179 (2020).
[15] Abou-Elmagd W.S., Hashem A.I., Synthesis of 1-Amidoalkyl-2-Naphthols and Oxazine Derivatives with Study of Their Antibacterial and Antiviral Activities, Med. Chem. Res., 22(4): 2005-2013 (2013).
[16] Ghomi J.S., Zahedi S., Ghasemzadeh M.A., AgI Nanoparticles as a Remarkable Catalyst in the Synthesis of (Amidoalkyl) Naphthol and Oxazine Derivatives: An Eco-Friendly Approach, Monatshefte für Chemie-Chemical Monthly, 145(7): 1191-1199 (2014).
[17] Boudebbous K., Boulebd H., Bensouici C., Harakat D., Boulcina R., Debache A., Synthesis, Docking Study and Biological Activities Evaluation of 1‐Amidoalkyl‐2‐Naphthol Derivatives as Dual Inhibitors of Cholinesterase and α‐Glucosidase, ChemistrySelect, 5(19): 5515-5520 (2020).
[18] Rahimizadeh R., Mobinikhaledi A., Moghanian H., Kashaninejad S. S., Design and Synthesis of Some New Biologically Active Amidoalkyl Naphthols in the Presence of Sulfonic Acid Functionalized Silica-Coated Fe3O4 Nanoparticles, Res. Chem. Inter., 48(2): 607-627 (2022).
[19] Bankar S.R., Shelke S.N., Nanomagnetite-Supported Molybdenum Oxide (Nanocat-Fe-Mo): An Efficient Green Catalyst for Multicomponent Synthesis of Amidoalkyl Naphthols, Research on Chemical Intermediates, 44(5): 3507-3521 (2018).
[23] Ahmadi M., Moradi L., Sadeghzadeh M., Solvent-Free Synthesis of Amidoalkyl Naphthols in the Presence of MWCNTs@SiO2/SO3H as Effective Solid Acid Catalyst, Monatshefte für Chemie-Chemical Monthly, 150(6): 1111-1119 (2019).
[27] Madankumar N., Pitchumani K., β‐Cyclodextrin‐Monosulphonic Acid Catalyzed Efficient Synthesis of 1‐Amidoalkyl‐2‐Naphthols, ChemistrySelect, 2(33): 10798-10803 (2017).
[28] Dipake S.S., Gadekar S.P., Thombre P.B., Lande M.K., Rajbhoj A.S., Gaikwad S.T., ZS-1 Zeolite as a Highly Efficient and Reusable Catalyst for Facile Synthesis of 1-Amidoalkyl-2-Naphthols Under Solvent-Free Conditions, Catalysis Letters, 151: 1-16 (2021).
[29] Hummers W.S., Offeman R.E., Graphene Oxide, Journal of the American Chemical Society, 80: 1339 (1958).
[30] Santamaría-Juárez G., Gómez-Barojas E., Quiroga-González E., Sánchez-Mora E., Quintana-Ruiz M., Santamaría-Juárez J.D., Safer Modified Hummers’ Method for the Synthesis of Graphene Oxide with High Quality and High Yield, Mater. Res. Express, 6(12): 125631 (2020).
[31] Priyadarshini E., Pradhan N., Sukla L.B., Panda P.K., Controlled Synthesis of Gold Nanoparticles Using Aspergillus Terreus IF0 and Its Antibacterial Potential Against Gram Negative Pathogenic Bacteria, Journal of Nanotechnology, 2014: 1-9 (2014).
[32] Errahali M., Gatti G., Tei L., Canti L., Fraccarollo A., Cossi M., Marchese L., Understanding Methane Adsorption in Porous Aromatic Frameworks: An FTIR, Raman, and Theoretical Combined Study, The Journal of Physical Chemistry C, 118(19): 10053-10060 (2014).
[33] Guan L., Xu H., Huang D., The Investigation on States of Water in Different Hydrophilic Polymers by DSC and FTIR, Journal of Polymer Research, 18(4): 681-689 (2011).
[34] Kvarnström C., Petr A., Damlin P., Lindfors T., Ivaska A., Dunsch L., Raman and FTIR Spectroscopic Characterization of Electrochemically Synthesized Poly (Triphenylamine), PTPA, Journal of Solid State Electrochemistry, 6(8): 505-512 (2002).
[35] Yao S.F., Chen X.T., Ye H.M., Investigation of Structure and Crystallization Behavior of Poly (Butylene Succinate) by Fourier Transform Infrared Spectroscopy, The Journal of Physical Chemistry B, 121(40): 9476-9485 (2017).
[37] Jin S., Qian L., Qiu Y., Chen Y., Xin F., High-Efficiency Flame Retardant Behavior of Bi-DOPO Compound with Hydroxyl Group on Epoxy Resin, Polymer Degradation and Stability, 166: 344-352 (2019).
[38] Das P.K., Mohapatra R.K., Patjoshi S.B., El-ajaily M.M., Dash D.C., Synthesis, Spectral Characterization and Antimicrobial Studies of Transition Metal Complexes of Benzothiazole Based Schiff Bases, Asian Journal of Chemistry, 30(12): 2608-2614 (2018).
[39] Mary Y.S., Varghese H.T., Panicker C.Y., Ertan T., Yildiz I., Temiz-Arpaci O., Vibrational Spectroscopic Studies and Ab initio Calculations of 5-Nitro-2-(p-Fluorophenyl) Benzoxazole, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(2): 566-571 (2008).
[40] Tawiah B., Yu B., Yuen R.K., Hu Y., Wei R., Xin J.H., Fei B., Highly Efficient Flame Retardant and Smoke Suppression Mechanism of Boron Modified Graphene Oxide/Poly (Lactic acid) Nanocomposites, Carbon, 150: 8-20 (2019).
[42] Hirashima Y., Sato H., Suzuki A., ATR-FTIR Spectroscopic Study on Hydrogen Bonding of Poly (N-Isopropylacrylamide-Co-Sodium Acrylate) Gel, Macromolecules, 38(22): 9280-9286 (2005).
[43] Li R.W., Ventura L., Gruber J., Kawano Y., Carvalho L.R., A Selective Conductive Polymer-Based Sensor for Volatile Halogenated Organic Compounds (VHOC), Sensors and Actuators B: Chemical, 131(2): 646-651 (2008).
[44] Kojio K., Nakashima S., Furukawa M., Microphase-Separated Structure and Mechanical Properties of Norbornane Diisocyanate-Based Polyurethanes, Polymer, 48(4): 997-1004 (2007).
[45] Wang F., Liao Q., Chen K., Pan S., Lu M., The Crystallization and FTIR Spectra of ZrO2-Doped 36Fe2O3–10B2O3–54P2O5 Glasses and Crystalline Compounds, Journal of Alloys and Compounds, 611: 278-283 (2014).
[48] Chen M., Chen Y., Zhou X., Lu B., He M., Sun S., Ling X., Improving Water Resistance of Soy-Protein Wood Adhesive by Using Hydrophilic Additives, BioResources, 10(1): 41-54 (2015).
[49] Khiabani A.B., Rahimi S., Yarmand B., Mozafari M., Electrophoretic Deposition of Graphene Oxide on Plasma Electrolytic Oxidized-Magnesium Implants for Bone Tissue Engineering Applications, Materials Today: Proceedings, 5(7): 15603-15612 (2018).
[50] Vimala P.P., Mathew L., Biodegradation of Polyethylene Using Bacillus Subtilis, Procedia Technology, 24: 232-239 (2016).
[51] Baig N., Shetty S., Moustafa M.S., Al-Mousawi S., Alameddine B., Selective Removal of Toxic Organic Dyes Using Trӧger Base-Containing Sulfone Copolymers Made from a Metal-Free Thiol-Yne Click Reaction Followed by Oxidation, RSC Advances, 11(34): 21170-21178 (2021).
[52] Asensio J.A., Borrós S., Gómez‐Romero P., Proton‐Conducting Polymers based on Benzimidazoles and Sulfonated Benzimidazoles, J. Poly. Sci. Part A: Poly. Chem., 40(21): 3703-3710 (2002).
[53] Qin Z.H., Chen H., Yan Y.J., Li C.S., Rong L.M., Yang X.Q., FTIR Quantitative Analysis Upon Solubility of Carbon Disulfide/N-Methyl-2-pyrrolidinone Mixed Solvent to Coal Petrographic Constituents, Fuel Processing Technology, 133: 14-19 (2015).
[54] Zhang Q., He Y., Chen X., Hu D., Li L., Yin T., Ji L., Structure and Photocatalytic Properties of TiO2-Graphene Oxide Intercalated Composite, Chinese Science Bulletin, 56(3): 331-339 (2011).
[56] Zhang F., Jin J., Zhong X., Li S., Niu J., Li R., Ma J., Pd Immobilized on Amine-Functionalized Magnetite Nanoparticles: A Novel and Highly Active Catalyst for Hydrogenation and Heck Reactions, Green Chemistry, 13(5): 1238-1243 (2011).
[57] Xiao R., Yang W., Cong X., Dong K., Xu J., Wang D., Yang X., Thermogravimetric Analysis and Reaction Kinetics of Lignocellulosic Biomass Pyrolysis, Energy, 201: 117537 (2020).
[58] Jaikumar A., Kandlikar S.G., Gupta A., Pool Boiling Enhancement through Graphene and Graphene Oxide Coatings, Heat Transfer Engineering, 38(14-15): 1274-1284 (2017).
[60] Torabi M., Yarie M., Zolfigol M.A., Azizian S., Magnetic Phosphonium Ionic Liquid: Application as a Novel Dual Role Acidic Catalyst for Synthesis of 2′-Aminobenzothiazolomethylnaphthols and Amidoalkyl Naphthols, Research on Chemical Intermediates, 46(1): 891-907 (2020).
[63] Sapkal S.B., Shelke K.F., Madje B.R., Shingate B.B., Shingare M.S., 1-Butyl-3-Methyl Imidazolium Hydrogen Sulphate Promoted One-Pot Three-Component Synthesis of Amidoalkyl Naphthols, Bulletin of the Korean Chemical Society, 30(12): 2887-2889 (2009).
[66] Supal A.R., Gokavi G.S., An Environmentally Benign Three Component One-Pot Synthesis of Amidoalkyl Naphthols Using H4SiW12O40 as a Recyclable Catalyst, Journal of Chemical Sciences, 122(2): 189-192 (2010).
[67] Khabazzadeh H., Saidi K., Seyedi N., Cu-Exchanged Heteropoly Acids as Efficient and Reusable Catalysts for Preparation of 1-Amidoalkyl-2-Naphthols, J. Chem. Sci., 121(4): 429-433 (2009).
[68] Narayanan D.P., Cherikallinmel S.K., Sankaran S., Narayanan B.N., Functionalized Carbon Dot Adorned Coconut Shell Char Derived Green Catalysts for the Rapid Synthesis of Amidoalkyl Naphthols, Journal of Colloid and Interface Science, 520: 70-80 (2018).
[69] Srihari G., Nagaraju M., Murthy M.M., Solvent‐Free One‐Pot Synthesis of Amidoalkyl Naphthols Catalyzed by Silica Sulfuric Acid, Helvetica Chimica Acta, 90(8): 1497-1504 (2007).
[71] Pourmousavi S.A., Moghimi P., Ghorbani F., Zamani M., Sulfonated Polynaphthalene as an Effective and Reusable Catalyst for the One-Pot Preparation of Amidoalkyl Naphthols: DFT and Spectroscopic Studies, Journal of Molecular Structure, 1144: 87-102 (2017).
[72] Hakimi F., Silver nanoparticles: an Efficient and Versatile Reagent for the Synthesis of 1-Amidoalkyl-2-Naphthols, Inorganic and Nano-Metal Chemistry, 47(7): 994-998 (2017).