Influence of Silver Nanoparticles and 2-methylimidazolium Chloride on Conductivity of Poly (3,4-Ethylenedioxoy Thiophene): Poly(Styrene Sulfonic Acid) (PEDOT:PSS)

Document Type : Research Article

Authors

1 Department of Applied Chemistry, College of Sciences, Malek-Ashtar University of Technology, Isfahan, I.R. IRAN

2 Department of Nano-Physics, College of Sciences, Malek-Ashtar University of Technology, Isfahan, I.R. IRAN

Abstract

In this research, we report the significant conductivity enhancement of the PEDOT:PSS through adding different amounts of various nanoparticle into PEDOT:PSS aqueous solutions was synthesized in laboratory research. The synthesized PEDOT:PSS in laboratory scale demonstrated good conductivity and transparency of the surface. To evaluate the conductivity was studied silver nanoparticles as doping and these nanoparticles were used in conductivity final tests. Also, ionic liquid was used for study the polymer conductivity, 2-methylimidazolium chloride. The mechanism for this conductivity enhancement of optical and electrical was studied through various chemical and physical characterizations. The minimum of resistance (488 Ω) and maximum of conductivity was reached at about 5wt.% of 2-methylimidazolium chloride into the solution was synthesized in laboratory research. Appears to conductivity enhancement observed in this study is mainly due to the effect of nanoparticles and ionic liquids on the electrical and optical properties and conformational change of PEDOT chains, and hence weaken the electrostatic interactions between PEDOT cationic chains and PSS anionic chains. These resulted in the creation of a better conduction pathway among PEDOT:PSS particles, attributed to the improvement of conductivity. The electrical changes may be made to consider of polymers in applications such as organic light-emitting diodes and solar cells.

Keywords

Main Subjects


[1] Kaiser A.B., Rogers S.A., Park Y.W., Charge Transport in Conducting Polymers: Polyacetylene Nanofires, Molecul. Crystal Liquid Crystal., 415: 115-124 (2004).
[2] Gusakov P.E., Andrianov A.V., Aleshin A.N., Matsushita S., Akagi K., Electrical and Optical Properties of Doped Helical Polyacetylene Graphite Films in Terahertz Frequency Range, Synth. Met., 162:1846-1851 (2012).
[3] Baeriswyl D., Campbell D.K., Clark G.C., Harbeke G., Kahol P.K., Kiess H., Mazumdar S., Mehring M., Rehwald W., “Conjugated Conducting Polymers”, Editor: Kiess H., Springer Science & Business Media  (2012).
[4] Bakhshi A.K., Bhalla G., Electrically Conducting Polymers: Materials of the Twentyfist Century, J. Sci. Ind. Res., 63:715-728 (2004).
[6] Njuguna J., Pielichowski K., Recent Developments in Polyurethane-based Conducting Composites, J. Mater. Sci., 39: 4081-4094 (2004).
[7] معصومی، بخشعلی؛ بدل خانی، ام البنین؛ تهیه و شناسایی پلیمرهای لاتکس رسانا با پلیمرشدن آنیلین یا آنیزیدین در مجاورت لاتکس: بررسی الکتروفعالیت و خواص ضدخوردگی آن­ها، مجله علوم و تکنولوژی پلیمر، (4)32: 317 تا 325 (1392)
[8] Massoumi B., Omidi H., Vessaly E., Entezami A.A., Nanostructure Nanostructured Poly(2,2′-bithiophene)-co (3-dodecylthiophene): Preparation, Investigation of the Electroactivity, Conductivity, and Morphology, Int. J. Polym. Mater. Polym. Biomater., 63: 323-329 (2013).
[10] Shen J., Tsuchiya K., Ogino K., Synthesis and Characterization of Highly Fluorescent Derivatives Containing Polystyrene Sidearms, J. Polym. Sci., Part A: Polym. Chem., 46: 1003-1013 (2008).
[11] Cheylan S., Fraleoni-Morgera A., Puigdollers J., Voz C., Setti L., Alcubilla R., Badenes G., Study on a Thiophene-based Polymer for Optoelectronic Applications, Thin Solid Film., 497: 16-19 (2006).
[12] Cheylan S., Bolink H.J., Fraleoni-Morgera A., Puigdollers J., Voz C., Mencarelli I., Setti L., Alcubilla R., Badenes G., Improving the Effiiency of Light-Emitting Diode Based on a Thiophene Polymer Containing a Cyano Group, Org. Electron., 8: 641-647 (2007).
[16] Zhang, W., Zhao, B., He, Z., Zhao, X., Wang, H., Yang, S., Cao, Y. High-Efficiency ITO-Free Polymer Solar Cells Using Highly Conductive PEDOT: PSS/Surfactant Bilayer Transparent Anodes, Energy Environ Sci, 6: 1956-1964 (2013).
[17] S.-I. Na, S.-S. Kim, D.-Y. Kim, Efficient and Flexible Ito-Free Organic Solar Cells Using Highly Conductive Polymer Anodes, Adv. Mater., 20: 4061-4067 (2008).
[19] Kim Y.H., Sachse C., Machala M.L., May, C., Müller‐Meskamp L., Leo K., Highly Conductive PEDOT: PSS Electrode with Optimized Solvent and thermal Post‐Treatment for ITO‐Free Organic Solar Cells, Adv. Funct. Mater., 21: 1076-1081 (2011).
[20] Nardes A.M., Janssen R.A.J., Kemerink M., A Morphological Model for the Solvent-Enhanced Conductivity of Pedot:pss Thin Films, Adv. Funct. Mater., 18: 865-873 (2008).
[21] Reyes-Reyes M., Cruz-Cruz I., López-Sandoval R., Enhancement of the Electrical Conductivity in PEDOT: PSS Films by the Addition of Dimethyl Sulfate, J. Phys. Chem. C, 114: 20220-20224 (2010).
[24] Crispin X., Marciniak S., Osikowicz W., Zotti G., Denier van der Gon A.W., Louwet F., Fahlman M., Groenendaal L., De Schryver F., Salaneck W.R., Conductivity, Morphology, Interfacial Chemistry, and Stability of Poly(3,4-Ethylene Dioxythiophene)–Poly(Syrene Sulfonate): a Photoelectron Spectroscopy Study, J. Polym. Sci. Polym. Phys., 41: 2561-2583 (2003).
[26] Ouyang J., Xu Q., Chu C.-W., Yang Y., Li G., Shinar J., On the Mechanism of Conductivity Enhancement in Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Film Through Solvent Treatment, Polymer, 45: 8443–8450 (2004).
[27] Nardes A.M., Kemerink M., de Kok M.M., Vinken E., Maturova K., Janssen R.A., Conductivity, work Function, and Environmental Stability of Pedot:pss Thin FIlms Treated with Sorbitol, Organic Electronics, 9:727–734  (2008).
[28] Martin B.D., Nikolov N., Pollack S.K, Saprigin A., Shashidhar R., Zhang F., Heiney P.A., Hydroxylated Secondary Dopants for Surface Resistance Enhancement in Transparent Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Thin Films, Synthetic Metals, 142: 187-193 (2004).
[29] Zhu Z., Liu C., Xu J., Jiang Q., Shi H., Liu E., Improving the Electrical Conductivity of PEDOT: PSS fFilms by Binary Secondary Doping., Electron Mater Lett., 12: 54-58 (2016).
[30] Wang X., Hu S., Li Q., Li F., Yaob K., Shic M., Study of PEDOT:PSS-SnO2 Nanocomposite Film as an Anode for Polymer Electronics, Journal of Electroceramics, 18: 161-165 (2007).
[32] Atabaki F., Abdolmaleki A., Babaei E., Kalvandi M., Yousefi M.H., Study of Absorption Wavelength of PEDOT:PSS Synthesis Specially for Conductive Layer Used in Solar Cell, “Iran Conf. Optics Laser Eng.”, (2013).
[33] Atabaki F., Yousefi M.H., Abdolmaleki A., Kalvandi M., Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic Acid) (PEDOT:PSS) Conductivity Enhancement through Addition of Imidazolium-Ionic Liquid Derivatives, Polymer-Plastics Technology and Engineering, 54: 1009–1016 (2015).