Investigation of Antibacterial Properties of Silver Nanoparticles in Flame-Retardant and Standard Expandable Polystyrenes

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, I.R. IRAN

2 Department of Physics, Babol University of Technology, Babol, I.R. IRAN

Abstract

In this study, we investigated the antibacterial properties of silver nanocomposites in standard and flame-retardant expandable polystyrenes (EPS). To prepare the silver-polystyrene nanocomposite, we solved polymers separately in a solvent before adding nanoparticles into the solution. For both of  EPS samples, three different gelatin yellowish solutions of silver nanoparticles in polystyrene were synthesized at 12.5, 25 and 37.5 µg/cm3. TEM and XRD imaging showed that the silver nanoparticles were about 20 nm in diameter. Additionally, SEM imaging was used for the investigation of silver nanoparticles distribution and also morphology of the nanocomposite cross sections. Samples were laid on polymeric nanocomposite disks to study the antimicrobial properties of them in the presence of gram-negative E. coli ATCC 25922 bacteria and gram-positive Staphylococcus aureus ATCC 6538 bacteria through the standardized single disk. Our comparative study showed that flame-retardant expandable polystyrene-silver nanocomposite does not have any antimicrobial property against these bacteria, while standard expandable polystyrene-silver nanoparticle has some antibacterial potential on Staphylococcus aureus ATCC 6538 which was dependent on concentration levels of the silver nanoparticles. Results of this work could be justified based on the roles of silver nanoparticle concentrations, impurities in polystyrenes and structure of the microorganisms. This research may be considered as a base for investigations on antimicrobial properties of polystyrene nanocomposites as well as vast industrial and healthcare applications of them in the future.

Keywords

Main Subjects


 [1] زمان خان، حسام؛ آیتی، بیتا؛ گنجی دوست، حسین، تجزیه فتوکاتالیستی فنل به وسیله نانوذرات روی اکسید تثبیت شده بر بستر بتنی، نشریه شیمی و مهندسی شیمی ایران، (3) 31: 9- 19(1391).
[2] Vodnik V.V., Božanić D.K., Džunuzović E., Vuković J., Nedeljković J.M., Thermal and Optical Properties of Silver–poly(methylmethacrylate) Nanocomposites Prepared by In-Situradical Polymerization, Eur. Polym. J., 46: 137–144 (2010).
[3] Singho N.D., Lah N.A.C., Johan M.R., Ahmad R., Enhancement of the Refractive Index of Silver Nanoparticles in Poly (Methyl Methacrylate), Int. J. Res. Eng. Technol., 1:2277–4378 (2012).
[4] Liu S., He J., Xue J., Ding W., Efficient Fabrication of Transparent Antimicrobial Poly(vinyl Alcohol) Thin Films, J. Nanopart. Res., 11:553–560 (2009).
[5] Feng Q., Dang Z., Li N., Cao X.,Preparation and Dielectric Property of Ag–PVA Nano-Composite, Mater. Sci. Eng. B, 99: 325–328(2003).
[6] Kazemi A., Raftari M., Tollabimazraehno S., Mahdavi M., Irajizad A., Comparison Anti-Bacterial Effect of Silver/Polystyrene Nanocomposites on Gram Negative and Positive Bacteria, “American Physical Society, APS March Meeting”, February 27-March 2 (2012).
[7] Zapata P.A., Tamayo L., Páez M., Cerda E., Azócar I., Rabagliati F.M., Nanocomposites Based on Polyethylene and Nanosilver Particles Produced by Metallocenic “in situ” Polymerization: Synthesis, Characterization, and Antimicrobial Behavior, Eur. Polym. J., 47:1541–1549 (2011).
[8] Abbasi A.R., Kalantary H., Yousefi M., Ramazani A., Morsali A., Synthesis and Characterization of Ag Nanoparticles@Polyethylene Fibers under Ultrasound irradiation, Ultrason. Sonochem., 19:853–857 (2012).
[9] Singh R.P., Tiwari A., Pandey A.C., Silver/Polyaniline Nanocomposite for the Electrocatalytic Hydrazine Oxidation, J. Inorg. Organomet. Polym., 21:788–792 (2011).
[10] Lokensgard E., "Industrial Plastics: Theory and Applications", Delmar, Cengage Learning, New York, USA (2010).
[11] Gray J.E., “Polystyrene: Properties, Performance, and Applications”, Nova Science Publishers (2011).
[12] Singleton P., "Bacteria in Biology, Biotechnology and Medicine", John Wiley & Sons Ltd, New York (1999).
[13] Kluytmans J., van Belkum A., H Verbrugh H., Nasal Carriage of Staphylococcus Aureus: Epidemiology, Underlying Mechanisms, and Associated Risks, Clin. Microbiol. Rev., 10:505-520 (1997).
[14] Bauer  A.W., Kirby  W.M.M., Sherris J.C., Turck M., Antibiotic Susceptibility Testing by a Standardized Single Disk Method, Am. J. Clin. Pathol., 45:493-496 (1966).
[15] Feng Q.L., Wu  J., Chen G.Q., Cui  F.Z., Kim  T.N., Kim  J.O., A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus, J. Biomed. Mater., 52:662-668 (2000).
[16] Son W.K., Youk J.H., Lee T.S., Park W.H., Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles, Macromol. Rapid Commun., 25:1632-1637 (2004).
[17] Melaiye  A., Sun Z., Hindi  K., Milsted  A., Ely D., Reneker D., Silver(I)−Imidazole Cyclophane gem-Diol Complexes Encapsulated by Electrospun Tecophilic Nanofibers: Formation of Nanosilver Particles and Antimicrobial Activity, J. Am. Chem. Soc, 127:2285-2291 (2005).
[18] Yildirim L.T., Kurtaran R., Namli H., Azaz A.D., Atakol O., Synthesis, Crystal Structure and Biological Activity of Two New Heterotrinuclear Thiocyanato Bridged Cu(II)-Hg(II)-Cu(II) Complexes, Polyhedron., 26:4187-4194 (2007).
[20] Eljarrat E., Barceló D., “Brominated Flame Retardants”, Springer Berlin Heidelberg (2010).
[22] Cullity B. D., “Elements of X-ray Diffraction”, Addison Wesley (1978).
[23] Cho K.H., Park J.E., Osaka T., Park S.G., The Study of Antimicrobial Activity and Preservative Effects of Nanosilver Ingredient, Electrochim.Acta, 51:956-960 (2005).
[24] Liau S., Read D., Pugh W., Furr J., Russell A., Interaction of Silver Nitrate with Readily Identifiable Groups: Relationship to the Antibacterial Action of Silver Ions, Lett. Appl. Microbiol., 25:279-283 (1997).
[25] Spacciapoli P., Buxton D., Rothstein D., Friden P., Antimicrobial Activity of Silver Nitrate Against Periodontal Pathogens, Periodontal J. Res., 36:108-113 (2001).
[26] Schrand A.M., Rahman M.F., Hussain S.M., Schlager J.J., Smith D.A., Syed A.F., Metal-Based Nanoparticles and Their Toxicity Assessment, WIREs Nanomed. Nanobiotechnol., 2:544–568 (2010).
[27] Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.C., In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells, Toxicol. Sci., 88:412-419 (2005).
[28] Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M., Syed A.F., Schlager J.J., The Interaction of Manganese Nanoparticles with PC-12 Cells Induces Dopamine Depletion, Toxicol. Sci., 92:456-463 (2006).
[29] Percival S.L., Bowler P.G., Russell D., Bacterial Resistance to Silver in Wound Care, J. Hosp. Infect.,60:1-7 (2005)
[30] Wright J.B., Lam K., Hansen D., Burrell R.E., Efficacy of Topical Silver Against Fungal Burn Wound Pathogens, Am. J. Infect. Control, 27:344-350 (1999).
[31] Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O., A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus, J. Biomed. Mater. Res., 52:662-8 (2000).
[32] Brett D.W. , A discussion of Silver as an Antimicrobial Agent: Alleviating the Confusion, Ostomy Wound Manag., 52:34-41 (2006).
[33] Hidalgo E., Dominguez C., Study of Cytotoxicity Mechanisms of Silver Nitrate in Human Dermal Fibroblasts, Toxicol. Lett., 98:169-179 (1998).
[34] Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Tam P.K., Chiu J.F., Che C.M., Silver Nanoparticles: Partial Oxidation and Antibacterial Activities, J. Biol. Inorg. Chem., 12:527–534 (2007).
[35] Martínez-Castañón G. A., Niño-Martínez N., Martínez-Gutierrez F., Martínez-Mendoza J. R., Ruiz F., Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes, J. Nanopart. Res., 10:1343–1348 (2008).
[36] Baker C., Pradhan A., Pakstis L., Pochan D.J., Shah S. I., Synthesis and Antibacterial Properties of Silver Nanoparticles, J. Nanosci. Nanotechnol., 5:244-249 (2005).
[38] Powers K.W., Brown S.C., Krishna V.B., Wasdo S.C., Moudgil B.M., Roberts S.M., Research Strategies for Safety Evaluation of Nanomaterials. Part VI. Characterization of Nanoscale Particles for Toxicological Evaluation, Toxicol. Sci., 90:296-303 (2006).
[39] Jiang J., Oberdörster G., Biswas P., Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies, J. Nanopart. Res., 11:77-89 (2009).
[40] Keller A.A., Wang H., Zhou D., Lenihan H.S., Cherr G., Cardinale B.J., Miller R., Ji Z., Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices, Environ. Sci. Technol., 44:1962–1967 (2010).
[41] Pranami G., “Understanding Nanoparticle Aggregation”, PhD Dissertation, Iowa State University, USA (2009).
[43] Wagoner E.R., Baumberger C.P., Peverly A.A., Peters D.G., Electrochemical Reduction of 1,2,5,6,9,10-hexabromocyclododecane at Carbon and Silver Cathodes in Dimethylformamide, J. Electroanal. Chem., 713:136–142 (2014).
[45] Isse A.A., Falciol L., Mussini P.R., Gennaro A., Relevance of Electron Transfer Mechanism in Electrocatalysis: the Reduction of Organic Halides at Silver Electrodes, Chem. Commun., 3:344-346 (2006)
[46] Strawsine L.M., Sengupta A., Raghavachari K., Peters D.G., Direct Reduction of Alkyl Monohalides at Silver in Dimethylformamide: Effects of Position and Identity of the Halogen, Chem. Electrochem., 2:726–736 (2015).
[47] Pretty S.D., Musa A.Y., Wren J.C., Reactions of Bromide and Iodide Ions with Silver Oxide Films on Ag Substrates, J. Electrochem. Soc., 160:H13-H21 (2013).
[48] Vojinovic V., Mentus S., Komnenic V., Bromide Oxidation and Bromine Reduction in Propylene Crbonate, J. Electroanal. Chem., 547:109-113 (2003).
[49] Brown L., Wolf J.M., Prados-Rosales R., Casadevall A., Through the wall: Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria and Fungi, Nature Rev. Microbiol., 13:620–630 (2015).
[50] Vaara M., Antibiotic-Supersusceptible Mutants of Escherichia coli and Salmonella Typhimurium., Antimicrob Agents Chemother., 37:2255–2260 (1993)
[51] Nikaido H., Antibiotic Resistance Caused by Gram-Negative Multidrug Efflux Pumps, Clin. Infect. Dis., 27:S32-41 (1998)
[52] Li W-R., Xie X-B., Shi Q-S., Zeng H-Y., OU-Yang Y-S., Chen Y-B., Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia Coli, Appl. Microbiol. Biotechnol., 85:1115-1122 (2010)
[53] Mirzajania F., Ghassempour A., Aliahmadi A., Esmaeili M.A., Antibacterial Effect of Silver Nanoparticles on Staphylococcus Aureus, Res. Microbiol., 162:542–549 (2011)
[54] Seltmann G., Holst O., “The Bacterial Cell Wall”, Springer-Verlag Berlin Heidelberg (2002)
[55] Vollmer W., Blanot D., de Pedro M.A., Peptidoglycan Structure and Architecture, FEMS Microbiol. Rev., 32:149-167 (2008).