Electro-oxidation of Formaldehyde Using Modified Carbon Paste Electrode with MCM-41 Containing Silver

Document Type : Research Article


Department of Chemistry, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, I.R. IRAN


Considering the importance of the fuel cells, we are up to developing an appropriate and efficient electrode system in this project so that we may take a step forward in this field. Besides, the significance of nanostructure compounds in electrochemistry led us to use a nanoporous silicate zeolite (MCM-41) along with silver nanoparticle in electrode fabrication. Characterization of the synthesized nano zeolite was carried out using X-Ray Diffraction (XRD), Fourier Transform InfraRed (FT-IR) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM) techniques. Then, the synthetic nano zeolite containing Ag nanoparticle were employed in the fabrication of the modified carbon paste electrode and was used in the electrocatalytic oxidation of formaldehyde. The mechanistic and kinetic studies of the reactions were undertaken based on cyclic voltammetry and chronoamperometry techniques. The results revealed that the modified electrodes with MCM-41 nano zeolite and Ag nanoparticle exhibited much higher current densities and fewer overpotentials than that of bare carbon paste electrode for use in the fuel cell. 


Main Subjects

[1]  Xing X., Xiao X., Wang L., Wang Y., Highly Sensitive Formaldehyde Gas Sensor Based on Hierarchically Porous Ag-Loaded ZnO Heterojunction Nanocomposites, Sensor. Actuat.
B-Chem., 247: 797-806 (2017).
[2]  Zhang T., Qin L., Kang S.-Z., Li G., Li X., Novel Reduced Graphene Oxide/Ag Nanoparticle Composite Film with Sensitive Detection Activity Towards Trace Formaldehyde, Sensor. Actuat. B-Chem., 242: 1129-1132 (2017).
[3] Castro-Hurtado I., Mandayo G., Castaño E.,Conductometric Formaldehyde Gas Sensors. A Review: From Conventional Films to Nanostructured Materials, Thin Solid Films, 548: 665-676 (2013).
[4] Usui Y., Sato K., Tanaka M., Catalytic Dihydroxylation of Olefins with Hydrogen Peroxide: An Organic‐Solvent‐and Metal‐Free System, Angew. Chem. Int. Ed., 42(45): 5623-5625 (2003).
[5] Jin Z., Li P., Liu G., Zheng B., Yuan H., Xiao D., Enhancing Catalytic Formaldehyde Oxidation on CuO–Ag2O Nanowires for Gas Sensing and Hydrogen Evolution, J. Mater. Chem. A, 1(46): 14736-14743 (2013).
[6] Dumas T., Determination of Formaldehyde in Air by Gas Chromatography, J. Chromatogr. A, 247(2): 289-295 (1982).
[8] Ferapontova E.E., Grigorenko V.G., Egorov A.M., Börchers T., Ruzgas T., Gorton L., Mediatorless Biosensor for H2O2 Based on Recombinant Forms of Horseradish Peroxidase Directly Adsorbed on Polycrystalline Gold, Biosens. Bioelectron., 16(3): 147-157 (2001).
[12] Rahimnejad M., Hassaninejad-Darzi S., Organic Template-Free Synthesis of Ni-ZSM-5 Nanozeolite: a Novel Cata-Lyst for Formaldehyde Electrooxidation onto Modified Ni-ZSM-5/CPE, Int. J. Bio-Inorg. Hybr. Nanomater, 4(3): 141-153 (2015).
[13] Azizi S.N., Ghasemi S., Amiripour F., Nickel/P Nanozeolite Modified Electrode: a New Sensor for the Detection of Formaldehyde, Sensor. Actuat. B-Chem., 227: 1-10 (2016).
[16] Habibi B., Ghaderi S., Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@ Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 99-112 (2016).
[17] Dai Z., Liu S., Ju H., Direct Electron Transfer of Cytochrome c Immobilized on a NaY Zeolite Matrix and Its Application in Biosensing, Electrochim. Acta, 49(13): 2139-2144 (2004).
[18] Nam J.-H., Jang Y.-Y., Kwon Y.-U., Nam J.-D., Direct Methanol Fuel Cell Pt–Carbon Catalysts by Using SBA-15 Nanoporous Templates, Electrochem. Commun., 6(7): 737-741 (2004).
[20] Kresge C., Leonowicz M., Roth W., Vartuli J., Beck J., Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature, 359: 710-712 (1992).
[21] Beck J., Vartuli J., Roth W.J., Leonowicz M., Kresge C., Schmitt K., et al., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc., 114(27): 10834-10843 (1992).
[22] Ahmadi Nasab N., Hassani Kumleh H., Kazemzad M., Ghavipanjeh F., Application of Spherical Mesoporous Silica MCM-41 for Adsorption of Dibenzothiophene (A Sulfur Containing Compound) from Model Oil, Iran. J. Chem. Chem. Eng. (IJCCE), 33(3): 37-42 (2014).
[23] Lv L., Wang K., Zhao X., Effect of Operating Conditions on the Removal of Pb2+ by Microporous Titanosilicate ETS-10 in a Fixed-Bed Column, J. Colloid Interface Sci., 305(2): 218-225 (2007).
[24] Miyake Y., Yosuke M., Azechi E., Araki S., Tanaka S., Preparation and Adsorption Properties of Thiol-Functionalized Mesoporous Silica Microspheres, Ind. Eng. Chem. Res., 48(2): 938-943 (2009).
[26] Santos M., Bulhoes L., Electrogravimetric Investigation of Formaldehyde Oxidation at Pt Electrodes in Acidic Media, Electrochim. Acta, 49(12): 1893-1901 (2004).
[27] Liu X., Sun H., Yang Y., Rapid Synthesis of Highly Ordered Si-MCM-41, J. Colloid Interface Sci., 319(1): 377-380 (2008).
[28] Klug H.P., Alexander L.E.,“X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials”, 2nd ed., Wiley-VCH, New York,(1974).
[29] Shen S., Chow P.S., Chen F., Tan R.B.H., Submicron Particles of SBA-15 Modified with MgO as Carriers for Controlled Drug Delivery, Chem. Pharm. Bull., 55(7): 985-991 (2007).
[31] Venkatathri N., Pillai K.V., Rajini A., Raju M.N., Reddy I.A.K., Structural and Catalytic Properties of a Novel Vanadium Containing Solid Core Mesoporous Shell Silica Catalysts for Gas Phase Oxidation Reaction, J. Chem. Sci., 125(1): 63-69 (2013).
[32] Chowdhury S.R., Ghosh S., Bhattachrya S.K., Improved Catalysis of Green-Synthesized Pd-Ag Alloy-Nanoparticles for Anodic Oxidation of Methanol in Alkali, Electrochim. Acta, 225: 310-321 (2017).
[34] Bard A.J., Faulkner L.R., “Electrochemical Methods, Fundamentals and Applications”, 2nd ed.; Wiley-VCH, New York,(2001).
[35] Hassaninejad-Darzi S.K., Rahimnejad M., Shajie F., Kootenaei A.H.S., Electrocatalytic Oxidation of Formaldehyde onto Carbon Paste Electrode Modified with Hydrogen Titanate Nanotubes, Including Nickel Hydroxide, Iran. J. Sci. Technol. A, 42(3): 1259-1268 (2018).
[37] Yu Y., Su W., Yuan M., Fu Y., Hu J., Electrocatalytic Oxidation of Formaldehyde on Nickel Ion Implanted-Modified Indium Tin Oxide Electrode, J. Power Sources, 286: 130-135 (2015).
[39] Geng J., Bi Y., Lu G.,Morphology-Dependent Activity of Silver Nanostructures Towards the Electro-Oxidation of Formaldehyde, Electrochem. Commun., 11(6): 1255-1258 (2009).