Introducing Red Mud as an Efficient Catalyst for One-pot Synthesis of 3-Substituted Coumarins and Investigation of the Reaction Thermodynamics Using Computational Chemistry

Document Type : Research Article


1 Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914 Rasht, I.R. IRAN

2 Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran

3 Faculty of Chemistry, Kharazmi University, Tehran, Iran


One-pot synthesis of 3-substituted coumarins using Red mud (RM) which emerges as a by-product from the alumina producing process as a catalyst via Knoevenagel condensation of 2-hydroxybenzaldehyde derivatives and malonate derivatives are investigated. Reaction carried out under various conditions and the best results are obtained when the reaction is done under microwave irradiation. RM showed an efficient catalytic activity in this reaction. The catalyst can be used for at least four times after reactivation without remarkable losing in its efficiency. Finally, some of the thermochemical properties such as enthalpy and Gibbs free energy of formation for the synthesized coumarins are calculated using quantum chemistry, and also an electrostatic potential map of some of the synthesized coumarins was obtained using computational chemistry software which could be so helpful for the analysis of active reaction sites of coumarins.


Main Subjects

[1] Estévez-Braun A., González A. G., Coumarins, Nat. Prod. Rep., 14: 465-475 (1997).
[3] Lacy A., O’Kennedy R., Studies on Coumarins and Coumarin-Related Compounds to Determine their Therapeutic Role in the Treatment of Cancer, Current Pharmaceutical Design, 10: 3797-3811 (2004).
[4] Raju B. B., Varadaragan T., Spectroscopic Studies of 7-Diethylamino-3-Styryl Coumarins., J. Photochem. Photobiol A.,85: 263-267 (1995).
[5] Zabradink M.,”The Production and Application of Fluorescent Brightening Agent”, John Wiley and Sons: New York, (1992).
[6] O’Kennedy R. O.,Zhorenes R. D.,”Coumarins: Biology Applications and Mode of Action”, John Wiley and Sons, Chichester, (1997).
[7] Yu D., Xie M. L., Morris-Natschke S. L., Lee K. H., Recent Progress in the Development of Coumarin Derivatives as Potent anti-HIV Agents.,Med. Res. Rev., 23: 322-345 (2003).
[8] Gadakh S. K., Dey S., Sudalai A., Rh-Catalyzed Synthesis of Coumarin Derivatives from Phenolic Acetates and Acrylates via C–H Bond Activation, J. Org. Chem., 80: 1544-11550 (2015).
[11] Reddy M. S., Thirupathi N., Babu M. H., Puri S., Synthesis of Substituted 3-Iodocoumarins and 3-Iodobutenolides via Electrophilic Iodocyclization of Ethoxyalkyne Diols, J. Org. Chem., 78: 5878-5888 (2013).
[12] Pechmann V. H., Duisherg C., NeueBildungsweise der Cumarine. Synthese des Daphnetins. I, Chem. Ber., 17: 929-936 (1884).
[13] Perkin W. H., Henry W. S.,On propionic Coumarin and Some of its Derivatives., J. Chem. Soc., 28: 10-15 (1875).
[14] Brufola G., Fringuelli F., Piermatti O., Pizzo F.,Simple and Efficient One-Pot Preparation of 3-Substituted Coumarins in Water., Heterocycles, 43: 1257-1266 (1966).
[16] Shriner R.L., The Reformatsky Reaction. Org. React., 1: 15-18(1942).
[17] Yavari I., Hekmat-shoar R., Zonouzi A., A New and Efficient Route to 4- Carboxymethylcoumarins Mediated by Vinyltriphenylphosphonium Salt. Tetrahedron Lett., 39, 2391-2392(1998).
[18] Shah D.N., Shah N.M., The Kostanecki-Robinson Acylation of 5-Hydroxy-6-Acetyl-4-methylcoumarin. J. Am. Chem. Soc., 77: 1699-1700 (1955).
[19] Shaabani A., Ghadari R., Rezayan A.H., Synthesis of Functionalized Coumarins, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 30(4): 19-22 (2011).
[21] Alexander M. V., Bhat P. R., Samant D. S., Bismuth (III) Nitrate Pentahydrate: a Mild and Inexpensive Reagent for Synthesis of Coumarins Under Mild Conditions.,Tetrahedron Lett., 46: 6957-6959 (2005).
[22] Pera J., Boumaza R., Ambroise J., Development of a Pozzolanic Pigment from Red Mud., Cement and Concrete Research27: 1513-1522 (1997).
[23] Khezri S.H., Azimi N., Mohammed-Vali M., Eftekhari-Sis B., Hashemi M.M., Baniasadi M.H., Teimouri F., Red Mud Catalyzed One-pot Synthesis of Nitriles from Aldehydes and Hydroxylamine Hydrochloride Under Microwave Irradiation., Arkivocxv: 162-170 (2007).
[24] AlvarezJ., Rosal R., Sastre H., Diez F. V., Characterization and Deactivation Studies of an Activated Sulfided Red Mud used as Hydrogenation Catalyst., Appl. Catal. A Ge., 167: 215-223 (1998).
[25] Ordonez S., Sastre H., Diez F. V., Catalytic Hydrodechlorination of Tetrachloroethylene Over Red Mud., J. Hazard. Mater, 81: 103-114 (2001).
[26] Cakici A. I., Yanik J.,Ucar S., Karayildirim T., Anil H., Utilization of Red Mud as Catalyst in Conversion of Waste Oil and Waste Plastics to Fuel., J. Material Cycles and Waste Management, 6: 20-26 (2004).
[27] Ander L., “Microwaves in Organic Synthesis”, John Wiley-VCH: New York, (2002).
[29] Khalili B., Jajarmi P., Eftekhari-Sis B., Hashemi M. M., Novel One-Pot Three-Component Synthesis of New 2-Alkyl-5-aryl-(1H)-pyrrole-4-ol in Water., J. Org. Chem., 73: 2090-2095 (2008).
[30] Eftekhari-Sis B., Khalili B., Abdollahifar A., Hashemi M. M., Transition Metal Free Oxidation of Alcohols to Carbonyl Compounds Using Hydrogen Peroxide Catalyzed with LiCl on Montmorillonite K10., ActaChim. Slov., 54: 635-637 (2007).
[31] Hashemi M. M., Eftekhari-Sis B., Abdollahifar A., Khalili B., ZrOCl2.8H2O on Montmorillonite K10 Accelerated Conjugate Addition of Amines to α,β-Unsaturated Alkenes under Solvent-Free Conditions, Tetrahedron, 62: 672-677 (2006).
[32] Khalili B.,Tondro T., Hashemi M. M., Novel One-pot Synthesis of (4 or 5)-Aryl-2-aryloyl-(1H)-imidazoles in Water and Tauto-isomerization Study Using NMR., Tetrahedron, 65: 6872-6876 (2009).
[34] Mahmoodi N. O., Khalili B., Rezaeianzade O., Ghavidast A., One-pot Multicomponent Synthesis of Indol-3-ylhydrazinyl Thiazoles as Antimicrobial Agents., Res. Chem. Int.,42:8 (2016).
[36] Khalili B., SadeghzadehDarabi F., Eftekhari-Sis B., Rimaz M., Green Chemistry: ZrOCl2.8H2O Catalyzed Regioselective Synthesis of 5-Amino-1-aryl-1H-tetrazoles from Secondary Arylcyanamides in Water., Monatsh. Chem., 144: 1569-1572 (2013).
[37] Frisch M.J., et al., "Gaussian 03", Gaussian, Inc., Pittsburgh PA, (2003).
[38] Lu T., Chen F. W., Multiwfn: a Multifunctional Wavefunction Analyzer., J. Comput. Chem., 33: 580–592 (2012).
[39] Fadda A. A., Zeimaty M. T., Gerges M. M., Refat H. M.,Biehl E. R., Base Catalyzed Condensation of Malononitrile and 2-Hydroxy-1- naphtaldehyde with Diffrent Ketones., Heterocycles, 43: 23-32 (1996).
[40] Medda F., RussellR. J.M., Higgins M., McCarthy A.R., Campbell J.,SlawinA.M.Z., Lane D.P., Lain S., Westwood N. J., Novel Cambinol Analogs as Sirtuin Inhibitors: Synthesis, Biological Evaluation, and Rationalization of Activity., J. Med. Chem., 52:2673-2682 (2009).
[41] Yin Y., Wang M.,Liu Q., Hu J., Sun S.,  Kang J., A C–C Bond Formation Reaction at the α-carbon Atom of α-oxo Ketene Dithioacetals via the Baylis–Hillman Type Reaction., Tetrahedron Lett.,46: 4399-4402 (2005).
[43] Horning E. C., Horning M. G., Coumarins from 2-Hydroxy-3-methoxybenzaldehyde., J. Am. Chem. Soc., 69: 968-969 (1974).
[44] Volmajer J., Toplak R., Leban I., Marechal L. M. A., Synthesis of New Iminocoumarins and Their Transformations into N-chloro and Hydrazono Compounds., Tetrahedron, 61: 7012-7021 (2005).
[45] بلبل امیری، محدثه؛ ارشدی، ستار؛ عزیزی، زهرا؛ بررسی برهم­کنش گاز خردل بر روی نانو لوله­های آلومینیوم ـ نیترید زیگزاگ (0،4)، (0،5) و (0،6)، نشریه شیمی و مهندسی شیمی ایران، (4)31: 33 تا 41 (1393).
[46] مسعودی، مریم؛ صالحی، حمدا... ؛ محاسبه پارامترهای ساختاری و چگالی ابر الکترونی ترکیب 2TaB با استفاده از روش شبه پتانسیل، نشریه شیمی و مهندسی شیمی ایران، (2)33: 6 تا 41 (1393).
[49] سلیمانی امیری، سمیه؛ بررسی محاسباتی حالت­های الکترونی یک تایی، سه تایی و پنج تایی نایترنواتینیل هالوسایلیلن، نشریه شیمی و مهندسی شیمی ایران، (4)35: 87 تا 98 (1395).
[50] فرمانزاده، داود؛ طبری، لیلا؛ مطالعه DFT اثرمیدان الکتریکی بر جذب برخی ترکیبات نیتروآروماتیک در سطح نانولوله روی اکسید، نشریه شیمی و مهندسی شیمی ایران، انتشار آنلاین (1396).
[52] Khalili, B., Rimaz, M., Tondro, T., DFT Study of N-substituted Sulfamic Acid Derivatives Acidity in Aqueous Media and Gas Phase, Scientia Iranica C, 21(6): 2021-2028 (2014).
[53] خان محمدی، آزاده؛ مطالعه نظری برهمکنش­های مولکولی مشتقات بنزن پارا استخلاف شده با هیدروژن سیانید، نشریه شیمی و مهندسی شیمی ایران٫ انتشار آنلاین (1395)
[55] مجیدی، رویا؛ منصوری، خدیجه؛ شبیه‌سازی دینامیک مولکولی جذب مخلوط اکسیژن و نیتروژن روی نانومخروط‌ و نانولوله کربنی، نشریه شیمی و مهندسی شیمی ایران، (3)36: 133 تا 144 (1396).
[56] صالحی، حمدا.. ؛ نظری، حسن؛ محاسبة ویژگی­های الکترونی و ساختاری نیم رسانای منیزیم سلنید (MgSe) در فازهگزاگونال ورتسایت (B4) با استفاده از نظریه تابعی چگالی (DFT)، نشریه شیمی و مهندسی شیمی ایران، (3)35: 99 تا 107 (1395).
[57] Roohi H., Hejazi F., Mohtamedifar N., Jahantab M., Excited State Intramolecular Proton Transfer (ESIPT) in 2-(20-hydroxyphenyl)benzoxazole and its Naphthalene-Fused Analogs: A TD-DFT Quantum Chemical Study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118: 228–238 (2014).
[59] Soleimani Gorgani S., Samadizadeh M., Design of a New Nano Hinge Molecular Machine Based on Nitrogen Inversion: Computational Investigation, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35(1): 11-15 (2016).
[60] Mohajeri S., Noei M., Salari A.A., Hoseini Z., Ahmadaghaei N. Molaei N., Adsorption of Phosphine on a BN Nanosurface, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(1): 39-45 (2017).
[61] Mohajeri S., Noei M., Molaei N., Cyanogen, Methylacetylene, Hydroquinone, Ethylacetylene, Aniline, Pyrrole, and Ethanol Detection by Using BNNT: DFT Studies, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(5): 89-98 (2017).
[63] Adamo C., Barone V., Toward Reliable Adiabatic Connection Models Free from Adjustable Parameters, Chemical Physics Letters, 274: 242-250 (1997).
[64] Krishnan R., Binkley J.S., Seeger R., Pople J.A., Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions, The Journal of Chemical Physics, 72: 650-654 (1980).