Experimental Study of Chitosan Coating Effect on Reducing Aggregation of Multiwall Carbon Nanotubes as a Career for Delivery of Anticancer “Quercetin” Drug

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan,I.R. IRAN

2 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, I.R. IRAN

Abstract

Carbon nanotubes (CNTs) are used for many applications in the biomedical field such as drug delivery. Low biocompatibility and a high tendency for aggregation are the most problem of CNTs in drug delivery application. In this article effect of coating natural biocompatible polymer chitosan on reducing aggregation of multiwall carbon nanotubes as a carrier for delivery of anticancer “Quercetin” drug is studied. Synthesize of oxidized multiwall carbon nanotubes (OX-MWNT) and its modification with chitosan (CS-OXMWNT) was characterized by Fourier Transform InfraRed Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Dispersion of MWNT, OX-MWNT, CS-OXMWNT, and QC-CSOXMWNT in aqueous solution has been monitored by UV–Vis spectroscopy and turbidimeter analyze. According to UV–vis spectroscopy and turbidimeter analyses dispersion of CS-OXMWNT higher than MWNT, and decreases by drug loading. The turbidity of CS-OXMWNT and MWNT were 17.29 and 11.12 NTU respectively. The dispersion solutions are approximately stable for 24h.

Keywords

Main Subjects


[1] Madani S.Y., Naderi N., Dissanayake O., Tan A., Seifalian A.M., A New Era of Cancer Treatment: Carbon Nanotubes as Drug Delivery Tools, International Journal of Nanomedicine, 6: 2963-2977 (2011).
[2] Lay C. L., Liu H.Q., Tan H.R., Liu Y., Delivery of Paclitaxel by Physically Loading Onto Poly (ethylene glycol)(PEG)-Graftcarbon Nanotubes for Potent Cancer Therapeutics, Nanotechnology, 21(6): 065101-065111 (2010).
[3] Kam N.W.S., Dai H., Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality, Journal of the American Chemical Society, 127(16): 6021-6026 (2005).
[4] Liu Y., Wu D.C., Zhang W.D., Jiang X., He C.B., Chung T.S., Leong K.W., Polyethylenimine Grafted Multiwalled Carbon Nanotubes for Secure Noncovalent Immobilization and Efficient Delivery of DNA, Angewandte Chemie, 117(30): 4860-4863 (2005).
[5] Benincasa M., Pacor S., Wu W., Prato M., Bianco A., Gennaro R., Antifungal Activity of Amphotericin B Conjugated to Carbon Nanotubes, ACS Nano, 5(1): 199-208 (2010).
[6] McDevitt M.R., Chattopadhyay D., Kappel B.J., Jaggi J.S., Schiffman S.R., Antczak C., Scheinberg D.A. Tumor Targeting with Antibody-Functionalized, Radiolabeled Carbon Nanotubes, Journal of Nuclear Medicine, 48(7): 1180-1189 (2007).
[7] Liu Z., Chen K., Davis C., Sherlock S., Cao Q., Chen X., Dai H., Drug Delivery with Carbon Nanotubes for in Vivo Cancer Treatment, Cancer Research, 68(16): 6652-6660 (2008).
[8] Wong B.S., Yoong S.L., Jagusiak A., Panczyk T., Ho H.K., Ang W.H., Pastorin G., Carbon Nanotubes for Delivery of Small Molecule Drugs, Advanced Drug Delivery Reviews, 65(15): 1964-2015 (2013).
[9] Garmaroudi F.S., Vahdati R.A.R., Functionalized CNTs for Delivery of Therapeutics, International Journal of Nano Dimension, 1(2): 89-102 (2010).
[10] Venkatesan J., Kim S., Chitosan Composites for Bone Tissue Enginering—An Overview, Mar. Drugs, 8: 2252–2266 (2010).
[11] Yang L., Yang B., Zeng D., Wang D., Wang Y., Zhang L., Formation and Properties of a Novel Complex Composed of an Amylose-Grafted Chitosan Derivative and Single-Walled Carbon Nanotubes, Carbohydr. Polym., 85: 845–853 (2011).
[13] Khor E., “Chitin: Fulfilling a Biomaterials Promise”, Department of Chemistry, National University of Singapore, Republic of Singapore (2001).
[14] Li C., Yang K., Zhang Y., Tang H., Yan F., Tan Liang, Yao S., Highly Biocompatible Multi-Walled Carbon Nanotube–Chitosan Nanoparticle Hybrids as Protein Carriers, Acta biomaterialia, 7(8): 3070-3077 (2011).
[15] Ali Mohammadi Z.A., Aghamiri S.F., Zarrabi A., Talaie M. R., A Comparative Study on Non-Covalent Functionalization of Carbon Nanotubes by Chitosan and Its Derivatives for Delivery of Doxorubicin, Chemical Physics Letters, 642: 22-28 (2015).
[16] برزگر بفرویی، هادی؛ امین، محمد حسن؛ عبادزاده، تورج؛ جعفری پورمیبدی، جعفر؛ طباطبائی بفرویی، سید بهزاد؛ دیسپرز کردن نانولوله های کربنی در محیط های آبی با استفاده از سورفکتنت و روش شیمیایی، هفتمین کنگره سرامیک ایران، شیراز،1388
[18] Bustos-Ramírez K., Martínez-Hernández A.L., Martínez-Barrera G., Icaza M.D., Castaño V.M., Velasco-Santos C., Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction, Materials, 6(3): 911-926 (2013.
[19] Wu T.H., Yen F.L., Lin L.T., Tsai T.R., Lin C.C., Cham T.M., Preparation, Physicochemical Characterization, and Antioxidant Effects of Quercetin Nanoparticles, International Journal of Pharmaceutics, 346(1): 160-168 (2008).
[20] Zhang Y., Yang Y., Tang K., Hu X., Zou G., Physicochemical Characterization and Antioxidant Activity of Quercetin-Loaded Chitosan Nanoparticles, Journal of Applied Polymer Science, 107(2): 891-897 (2008).
[21] Song X., Zhao Y., Hou S., Xu F., Zhao R., He J., Chen Q., Dual Agents Loaded PLGA Nanoparticles: Systematic Study of Particle Size and Drug Entrapment Efficiency, European Journal of Pharmaceutics and Biopharmaceutics, 69(2): 445-453 (2008).
[22] Kumari A., Yadav S.K., Pakade Y.B., Singh B., Yadav S.C., Development of Biodegradable Nanoparticles for Delivery of Quercetin. Colloids and Surfaces, B: Biointerfaces, 80(2): 184-192 (2010).
[23] Barreto A.C.H., Santiago V.R., Mazzetto S.E., Denardin J.C., Lavín R., Mele G., Fechine P.B.A., Magnetic Nanoparticles for a New Drug Delivery System to Control Quercetin Releasing for Cancer Chemotherapy, Journal of Nanoparticle Research, 13(12): 6545-6553 (2011).
[24] Tan Q., Liu W., Guo C., Zhai G., Preparation and Evaluation of Quercetin-Loaded Lecithin-Chitosan Nanoparticles for Topical Delivery, International Journal of Nanomedicine, 6: 1621- (2011.
[25] Chen-yu G., Chun-fen Y., Qi-lu L., Qi T., Yan-wei X., Wei-na L., Guang-xi Z., Development of a Quercetin-Loaded Nanostructured Lipid Carrier Formulation for Topical Delivery, International Journal of Pharmaceutics, 430(1): 292-298 (2012).
[26] Ha H.K., Kim J.W., Lee M.R., Lee W.J., Formation and Characterization of Quercetin-Loaded Chitosan Oligosaccharide/β-Lactoglobulin Nanoparticle, Food Research International, 52(1): 82-90 (2013).
[27] Junrong Yu, Nadia Grossiord, Cor E. Koning and Joachim Loos, Controlling the Dispersion of Multi-Wall Carbon Nanotubes in Aqueous Surfactant Solution, Carbon, 45: 618-23 (2007).
[28] Rahmanian N., Hamishehkar H., Dolatabadi J.E.N., Arsalani N., Nano Graphene Oxide: A Novel Carrier for Oral Delivery of Flavonoids, Colloids and Surfaces B: Biointerfaces, 123: 331-338 (2014).
[29] Ren W., Qiao Z., Wang H., Zhu L., Zhang L., Flavonoids: Promising Anticancer Agents, Medicinal Research Reviews, 23(4): 519-534 (2003).
[30] Kumar S.R., Priyatharshni S., Babu V.N., Mangalaraj D., Viswanathan C., Kannan S., Ponpandian N., Quercetin Conjugated Superparamagnetic Magnetite Nanoparticles for in-Vitro Analysis of Breast Cancer Cell Lines for Chemotherapy Applications, Journal of Colloid and Interface Science, 436: 234-242 (2014.