Improving the Performance of Microbial Fuel Cell by Fabrication of a Cellulosic Nano-Biocomposite as Anode Electrode

Document Type : Research Article

Authors

1 Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, I.R. IRAN

2 Department of Wood Engineering and Technology, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, 49189-43464 Gorgan, I.R. IRAN

Abstract

Microbial Fuel Cell (MFC) is of the renewable energy in which microorganisms play the role of biocatalysts in Ox/Red reactions of a substrate like glucose. In MFC electrode is a key component. In this work, a porous nano-biocomposite electrode based on Bacterial Cellulose (BC) and polyaniline as continuous and dispersed phases respectively were synthesized by in situ chemical polymerization of 4 various concentrations of aniline. The synthesis was studied by FT-IR and FE-SEM. Then it was applied in MFC as an anode. Performance of MFC was examined in presence of new anodes. The resistance of electrodes and produced power and current densities were measured. The maximum power of 375mW/m3 and current of 617 mA/m2 were recorded for the system for the anode with maximum aniline concentration.

Keywords

Main Subjects


[1] Rahimnejad M., Ghoreyshi A.A., Najafpour G., Jafary T., Power Generation from Organic Substrate in Batch and Continuous Flow Microbial Fuel Cell Operations. Appl. Energy. 88(11): 3999-4004 (2011).
[2] Hassan S.H., El-Rab S.M.G., Rahimnejad M., Ghasemi M., Joo J.-H., Sik-Ok Y., Kim I.S., Oh S.-E., Electricity Generation from Rice Straw Using a Microbial Fuel Cell. Int. J. Hydrogen Energy. 39(17): 9490-9496 (2014).
[3] Mashkour M., Rahimnejad M., Effect of Various Carbon-Based Cathode Electrodes on the Performance of Microbial Fuel Cell. Biofuel Res. J., 2(4): 296-300 (2015).
[4] Rahimnejad M., Adhami A., Darvari S., Zirepour A., Oh S.-E., Microbial Fuel Cell as New Technology for Bioelectricity Generation: A Review, AEJ., 54(3): 745-756 (2015).
[5] He C.-S., Mu Z.-X., Yang H.-Y., Wang Y.-Z., Mu Y., Yu H.-Q., Electron Acceptors for Energy Generation in Microbial Fuel Cells Fed with Wastewaters: A Mini-Review, Chemosphere. 140: 12-17 (2015).
[6] Zhou M., Chi M., Luo J., He H., Jin T., An Overview of Electrode Materials in Microbial Fuel Cells. J. Power Sources. 196(10): 4427-4435 (2011).
[7] Hindatu Y., Annuar, M., Gumel A., Mini-Review: Anode Modification for Improved Performance of Microbial Fuel Cell. Renewable Sustainable Energy Rev., 73: 236-248 (2017).
[8] Yazdi A.A., D’Angelo L., Omer N., Windiasti G., Lu X., Xu J., Carbon Nanotube Modification of Microbial Fuel Cell Electrodes, Biosens. Bioelectron.. 85:  536-552 (2016).
[9] ElMekawy A., Hegab H.M., Losic D., Saint C.P., Pant D., Applications of Graphene in Microbial Fuel Cells: The Gap Between Promise and Reality, Renewable Sustainable Energy Rev., 72: 1389-1403 (2017).
[10] Mashkour M., Kimura T., Kimura F., Mashkour M., Tajvidi M., Tunable Self-Assembly of Cellulose Nanowhiskers and Polyvinyl Alcohol Chains Induced by Surface Tension Torque. Biomacromolecules. 15(1): 60-65 (2013).
[11] خواجوی ر،. مفتاحی ا،. اصفهانی ا.ج،. ستاری م،. سنتز سلولز میکروبی از سویه بومی و بررسی شبکه نانو الیافی به دست آمده از ساکاریدهای گوناگون، نشریه شیمی و مهندسی شیمی ایران، (3)31: 79 تا 93 (1391).
[12] Mashkour M., Moradabadi Z., Khazaeian A., Physical and Tensile Properties of Epoxy Laminated Magnetic Bacterial Cellulose Nanocomposite Films. J. Appl. Polym. Sci., 134(30):1-7 (2017).
[13] Kim Y.H., Park S., Won K., Kim H.J., Lee S.H., Bacterial Cellulose–Carbon Nanotube Composite as a Biocompatible Electrode for the Direct Electron Transfer of Glucose Oxidase. J. Chem. Technol. Biotechnol., 88(6): 1067-1070 (2013).
[14] Shi Z., Zang S., Jiang F., Huang L., Lu D., Ma Y., Yang G., In Situ Nano-Assembly of Bacterial Cellulose–Polyaniline Composites. RSC Adv., 2(3): 1040-1046 (2012).
[16] Baker C.O., Huang X., Nelson W., Kaner R.B., Polyaniline Nanofibers: Broadening Applications for Conducting Polymers. Chem. Soc. Rev., 46(5): 1510-1525 (2017).
[17] Marins J.A., Soares B.G., Dahmouche K., Ribeiro S.J., Barud H., Bonemer D., Structure and Properties of Conducting Bacterial Cellulose-Polyaniline Nanocomposites, Cellulose,18(5): 1285-1294 (2011).
[19] Müller D., Mandelli J., Marins J., Soares B., Porto L., Rambo C., Barra G., Electrically Conducting Nanocomposites: Preparation and Properties of Polyaniline (PAni)-Coated Bacterial Cellulose Nanofibers (BC), Cellulose, 19(5): 1645-1654 (2012).
[20] Lee H.-J., Chung T.-J., Kwon H.-J., Kim H.-J., Tze W.T.Y., Fabrication and Evaluation of Bacterial Cellulose-Polyaniline Composites by Interfacial Polymerization, Cellulose, 19(4): 1251-1258 (2012).
[21] Wang H., Bian L., Zhou P., Tang J., Tang W., Core–Sheath Structured Bacterial Cellulose/Polypyrrole Nanocomposites with Excellent Conductivity as Supercapacitors, J. Mater. Chem. A., 1(3): 578-584 (2013).