Study of Flotation Kinetic of Kermanshah State Gilsonite

Document Type : Research Article


Department of Mining Engineering, University of Uremia, Uremia, I.R. IRAN


In order to determination of flotation kinetic and particle size effect on it, flotation tests were conducted on a Gilsonite sample of Kermanshah state. Therefore, rougher and cleaner flotation tests through the oil collector - MIBC (Methyl Iso Butyl Carbonyl) frother, Gasoline collector – Pine oil frother and one test without any collector and frother, was done. Concentrates obtained from the tests weighted and ash analysis was taken from them, also all of the concentrates were grading, in different intervals. Then, for each test, drawn recovery – time graph and were fitted by using different first-order kinetics model. According to the graph observed that the results of all tests have high compliance with first order classic model. Kinetics constant calculated with the classic model are as follows, the rougher tests, oil collector – MIBC frother 0.0303, Gasoline collector – pine oil frother 0.0301 and test without any collector and frother is 0.0161. Also,
the amount of k respectively the above collector and frother 0.0168, 0.048, 0.013 was calculated in cleaner tests, then the retention time and flotation cell volume according to k calculated. In this research, studied the relationship between flotation rate constant, maximum recovery and particle size too. The results show that maximum flotation recovery and flotation rate in rougher tests belongs to flotation test without any collector and frother with a particle size in rang -850,+500 µm. as well as, in the cleaner test, maximum flotation recovery and flotation rate related to the test with Gasoline collector and pine oil frother with -850,+500 µm particle size.


Main Subjects

[1] Ehsani M.R., Eghbali F., Reduction of Sulfur and Ash from Tabas Coal by Froth Flotation, Iranian Journal of Chemistry & Chemistry Engineering (IJCCE), 26(2): 35-40 (2007).
[2] احمدی، رحمان؛ خدادادی دربان، احمد؛ عبداللهی، محمود؛ فلوتاسیون نرمه­های کالکوپیریت در حضور نانوحباب­های تولید شده با روش کاویتاسیون هیدرودینامیکی، نشریه شیمی و مهندسی شیمی ایران، (4)32: 81 تا 91، (1392).
[3] Shahbazi B., Rezai B., Koleini S.M.J., Noparast M., The Effect of Bubble Surface Area Flux on Flotation Efficiency of Pyrite Particles, Iranian Journal of Chemistry & Chemistry Engineering (IJCCE), 32(2): 109-118 (2013).
[4] Shahbazi B., Rezai B., The Effect of Micro Turbulence on Quartz Flotation Rate, Iranian Journal of Chemistry & Chemistry Engineering (IJCCE), 34(3): 79-89 (2015).  
[5] Imaizumi T., Inoue T., “Kinetic Considerations of Froth Flotation”, 6th International Mineral Processing Congress, Cannes, pp: 581-593(1963).
[6] Lynch A.J., Johnson N.W., Manlapig E.V., Thorne C.G., “Mineral and Coal Flotation Circuits, Their Simulation and Control”, Elsevier Scientific Publishing Company (1981).
[7] Garcia-Zuñiga H., “Flotation Recovery is an Exponential Function of Time”, Boletin Minero de la Societal National de Minero, Santiago, Chile (1935).
[8] Kelsall D.F., Application of Probability in the Assessment of Flotation Systems, Transactions of the Institute of Mining and Metallurgy, 70: 191-204 (1961).
[9] Jowett A., Safvi S.M.M., Refinements in Methods of Determining Flotation Rates, AIME, 217: 351-357 (1960).
[10] Villenueve J., Guillaneau J.C., and Durance M.V., Flotation Modelling: A Wide Range of Solutions for Solving Industrial Problems, Minerals Engineering, 8: 409-420 (1995).
[11] Gupta A. Yan D.S., “Mineral Processing Design an Operation: An Introduction”, Elsevier (2006).
[12] Lazic P., Calic N., Boltzmann S., “Model of Flotation Kinetics”, In: Proceedings of the XXI, International Mineral Processing Congress, pp: 87–93 (2000).
[13] Bogdanov O.S., Hainman V.J., Maximov I.I., “On Certain Physical-Mechanical Factors Determining the Rate of Flotation”, Proc. VII IMPC, New York, Gordon & Breach, pp:169- 174 (1964).
[14] Laskowski J.S., Xu Z., Yoon R.H., Energy Barrier in Particle-to-Bubble Attachment and Its Effect on Flotation Kinetics, Proc. XVII IMPC, 2: 237-249 (1991).
[15] Lazic P., Calic N., “Boltzmann's Model of Flotation Kinetics”, Proc. XXI IMPC (Rome), B, pp: 87-93 (2000).
[16] Husyin V., Oktay B., Metin U., Coal Flotation Optimization Using Modified Flotation Parameters and Combustible Recovery in a Jameson Cell, Energy Conversion and Management, 51: 1891-1897 (2010).
[17] Xu M., Modified Flotation Rate Constant and Selectivity Index, Mineral Engineering, 11: 271-278 (1998).
[18] Agar G.E., Chia J., Requisc, L., Flotation Rate Measurements to Optimize an Operating Circuits, Mineral Engineering, 11: 347-360 (1998).
[19] Oliveira J.F., Saraiva S.M., Pimenta J.S., Oliveira A.P.A., Kinetics of Pyrochlore Flotation from Araxes Mineral Deposits, Mineral Engineering, 14: 99-105 (2001).
[20] Drzymala J., Ratajczak T., Kowalczuk P., Kinetic Separation Curves Based on Process Rate Considerations, Physicochemical Problems of Mineral Processing, 53(2): 983-995 (2017).
[21] حاجی­زاده عمران، امیر؛ پارساپور، غلامعباس؛ بنیسی، صمد؛ "مدلسازی مدارهای فلوتاسیون زغال­سنگ، مطالعه موردی: کارخانه زغالشویی زرنداولین کنگره ملی زغال­سنگ، دانشگاه صنعتی شاهرود(1391).
[22] اسکندری نسب، محمود؛ انتظاری، علی؛ "طراحی مدارهای فلوتاسیون زغال­سنگ بر اساس رفتار سینتیکی ذراتاولین کنگره ملی زغال­سنگ، دانشگاه صنعتی شاهرود(1391).
[23] Ni Ch., Xie G., Jin M., Peng Y., Xia W., The Difference in Flotation Kinetics of Various Size Fractions of Bituminous Coal between Rougher and Cleaner Flotation Processes, Powder Technology, 292: 210-216(2016).
[24] Carr Donald D., "Industrial mineral and Rocks", Six ed. Vo11, Senior Editor, pp: 535-543 (1994).
[25] "گزارش اکتشافی قیر طبیعی در منطقه گیلانغرب"، سازمان صنعت، معدن و تجارت استان کرمانشاه (1394).
[26] Muganda S., Zanin M., Grano S.R., Benchmarking Flotation Performance: Single Minerals, Int. J. Miner. Process., 98(3-4): 182-194 (2011).
[27] Zhang H., Liu J., Cao Y., Wang Y., Effects of Particle Size on Lignite Reverse Flotation Kinetics in the Presence of Sodium Chloride, Powder Technol, 246:658-663 (2013).