Investigation of the Effect of Alkyl Chain Length and Anion Type on the Thermo Physical Properties of the Ionic Liquids Using Two Versions of the SAFT Equation of State

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Science, Imam Khomeini International University, P.O. Box 288, Qazvin, I.R. IRAN

Abstract

In this study, the pressure-volume behavior and some of the second-order thermophysical properties such as heat capacity and speed of sound for a family of imidazolium-based ionic liquids using the SAFT Equation of States (EoSs) were calculated and the effect of alkyl chain length and anion type on these properties were investigated. Two version of SAFT EoSs were used for calculation of thermophysical properties of ionic liquids: 1. PC-SAFT 2. Heterosegmented SAFT, both of them have very good ability for the prediction of the Helmholtz free energy and first-order thermophysical properties such as pressure-volume behavior. But in the prediction of second order thermophysical properties such as heat capacity at constant volume, heat capacity at constant pressure and speed of sound, have not accurate and performance. Also, the equations do not show the process of change in alkyl chain length and anion type on the second order thermophysical properties well.

Keywords

Main Subjects


[1] Lei Z., Zhang J., Li Q., Chen B., UNIFAC Model for Ionic Liquids, Ind. Eng. Chem. Res. 48: 2697 – 2704 (2009).
[2] Pereiro A.B., Rodriguez A., Ternary LLE of the Azeotrope(ethyl acetate + 2-propanol) with Different Ionic Liquids at T = 298.15, J. Chem. Thermodynamics. 39: 1608-1613 (2007).
[3] Pereiro A.B., Rodriguez A., Phase Equilibria of the Azeotropic Mixture Hexane + Ethyl Acetate with Ionic Liquids at 298.15 K, J. Chem. Eng. Data. 53: 1360-1366 (2008).
[5] Guzman O., Eloy Romos Lara J., Fernando del Rio, Liquid-Vapor Equilibria of Ionic Liquids from a SAFT Equation of State with Explicit Electrostatic Free Energy Contributions, J. phys. Chem. B. 119: 5864-5872 (2015).
[7] Xiaoyan Ji, christoph Held, Gabriele Sadowski,, Modeling Imidazolium-Based ionic Liquids with ePC-SAFT, Fluid Phase Equilib. 335: 64-73 (2012).
[8] Xiaoyan Ji, christoph Held, Modeling the Density of Ionic Liquids with ePC-SAFT, Fluid Phase Equilib. 410: 9-22 (2016).
[9] Rahmati M., Behzadi B., Ghotbi C., Thermodynamic Modeling of Hydrogen Sulfide Solubility in Ionic Liquids Using Modified SAFT – VR and PC-SAFT Equations of State, Fluid Phase Equilib. 309: 179 – 189 (2011).
[10] Maghari A., ZiaMajidi F., Pashaei E., Thermophysical Properties of Alkyl-Imidazolium Based Ionic Liquids Through the Hetetrosegmented SAFT-BACK Equation of State, Journal of Molecular Liquids 191:59-67(2014).
[12] صحرایی، وهاب؛ قطبی، سیروس؛ تقی­خانی، وحید؛ نظری، خداداد؛ بررسی ضریب فعالیت محلول‌های الکترولیتی و ضریب اسمزی مایع یونی [BMIM][BF4] با استفاده از معادله حالتSAFT-MSA  GV-، نشریه شیمی و مهندسی شیمی ایران، (1) 31: 45 تا 54 (1391).
[13] Gross J., Sadowski G., Perturbed-chain SAFT: An Equation of State Based on Perturbation Theory for Chain Molecules, Ind. Eng. Chem. Res.40(4): 1244-1260(2001).
[14] Gross J., Sadowski G., Application of Perturbed-Chain SAFT .Equation of State to Association  Systems.  Ind. Eng. Chem. Res. 41: 5510-5515 (2002).
[16] Chapman, W. G.; Jackson, G.; Gubbins, K. E., Phase Equilibria of Associating Fluids. Chain Molecules with Multiple Bonding Sites, Mol. Phys.65: 1057-1079 (1988).
[17] Wertheim M.S., Fluids with Highly Directional Attractive Forces. 1. Statistical thermodynamics., J. Stat. Phys. 35: 19-34 (1984).
[19] Wertheim M.S., Fluids with Highly Directional Attractive Forces.3.Multiple Attraction Sites., J. Stat. Phys. 42: 459-476(1986).
[21] Barker J.A., Henderson D., Perturbation Theory and Equation of State for Fluid. ІІ. A Successful Theory of Liquids., J. Chem. Phys.47: 4714 (1967).
[22] Barker J.A., Henderson D., Perturbation Theory and Equation of State for Fluids. І. The Square-Well Potential., J. Chem. Phys.47:2856(1967).
[23] Wolbach J.P.; Sandler S.I., Using Molecular Calculations to Describe the Phase Behavior of Cross Associating Mixtures., Ind. Eng. Chem. Res. 37: 2917-2928 (1998).
[24] Gross J., Sadowski G., Application of the Perturbed-Chain SAFT Equation of State to Associating Systems, Ind. Eng. Chem. Res., 41: 5510-5515 (2002).
[25] Kraska T., Gubbins K.E., Phase Equilibria Calculations with a Modified SAFT Equation of state. 1. Pure Alkanes, Alkanols, and Water., Ind. Eng. Chem. Res., 35: 4727-4737 (1996).
[26] Wang T., Peng C., Liu H., Hu Y., Equation of State for the Vapour-Liquid Equilibria of Binary System Containing Imidazolium-Based Ionic Liquids.,  Ind. Eng. Chem. Res. 46: 4323-4329(2007).
[27] Adidharma H., Radosz M., Prototype of an Engineering Equation of State for Heterosegmented Polymers., Ind. Eng. Chem. Res. 37:4453-4462 (1998).
[28] Adidharma H., Radosz M., Square-well SAFT Equation of State for Homopolymeric and Heteropolymeric Fluids , Fluid Phase Equilib., 158: 165–174 (1999).
[30] De Azevedo R.G., Esperanca J.M.S.S., Najdanovic-Visak V., Visak Z.P., Pires P.F.,Guedes H.J.R., da Ponte M.N., Rebelo L.P.N., Thermophysical and Thermodynamic Properties of 1-butyl-3-methylimidazolium Tetrafluoroborate and 1-butyl-3-imidazolium Hexafluorophosphate over an Extended Pressure Range, J. Chem. Eng. Data, 50: 997-1008 (2005).
[32] Gardas R.L, Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P., High- Pressure Densities and Derived Thermodynamic Properties of Imidazolium – Based ionic Liquids, J. Chem. Eng. Data, 52: 80-88 (2007).
[33] De Azevedo R.G., Esperanca J.M.S.S., Szydlowski J., Visak Z.P., Pires P.F.,Guedes H.J.R., Rebelo L.P.N., Thermophysical and Thermodynamic Properties of Ionic Liquids over an Extended Pressure Rang : [bmim][NTF2] and [Hmim][NTF2] , J. Chem. Thermodyn., 37: 888-899(2005).
[34] Waliszewski D., Stepniak I., Piekarski H., Lewandowski A., Heat Capacities of Ionic Liquids and Their Heats of Solution in Molecular Liquids, Thermochim. Acta, 433: 149-152(2005).
[35] Kabo G.J., Blokhin A.V., Paulechka Y.U., Kabo A.G., Shymanovich M.P., Magee J.W., Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluorophosphate in the Condensed State., J. Chem. Eng. Data. 49: 453-461(2004).
[36] Ge R., Hardacre C., Jacquemin J., Nancarrow P., Rooney D.W., Heat Capacities of Ionic Liquids as a Function of Temperature at 0.1 MPa. Measurement and Prediction, J. Chem. Eng. Data. 53: 2148-2153(2008).