Synthesis and Application of Manganese Dioxide Nanoparticles for Removal of Cationic Dyes from Water

Document Type : Research Article


1 Department of Chemistry, Faculty of Sciences, University of Guilan,, Rasht, I.R. IRAN

2 Environmental Research Institute, Academic Center Culture & Research, Environmental Engineering-ACECR, P.O. Box 3114-41635 Rasht, I.R. IRAN


In this research, MnO2 nanoparticles were prepared via chemical redox reactions. Then it was used for removal of the cationic dye of malachite green in an equilibrium batch system. SEM and XRD techniques were used for surface morphology and crystallinity characterization. For the determination of optimum adsorption conditions, the effect of different parameters including pH, initial concentration of dye, contact time, temperature, and adsorbent dosage were investigated. Freundlich and Langmuir adsorption isotherms were employed for the treatment of adsorption data and pseudo-first and second-order of kinetics used for kinetics study. The thermodynamic study indicated that the sorption is an endothermic spontaneous process accompanied by disorder increase. It was found that the adsorption data fit well with Pseudo-second order kinetics and the maximum sorption capacity was 275- 280 mg/g. Desorption study also was carried out and the exhausted adsorbent can be easily regenerated for frequent use.


Main Subjects

[1] Ledakowicz S., Gonera M., Optimization of Oxidants Dose for Combined Chemical and Biochemical Treatment of Textile Wastewater, Water Research, 31: 41-57 (1999).
[2] Hastie J., Bejan D., Teutli-Leon M., J. Bunce N., Electrochemical Methods for Degradation
of Orange II (Sodium 4-(2-Hydroxy-1-naphthylazo) Benzenesulfonate)
, Industrial & Engineering Chemistry Research, 45:84-98 (2006).
[3] Zhu C., Wang L., Kong L., Yang X., Wang L., Zheng Sh., Chen F., MaiZhi F., Zong H., Photocatalytic Degradation of AZO Dyes by Supported TiO2+UV in Aqueous Solution, Chemosphere, 41: 303-309 (2000).
[4] Raducan A., Olteanu A., Puiu M., Oancea D., Influence of Surfactants on the Fading of Malachite Green, Central European Journal of Chemistry, 6: 1895–1066 (2008).
[5] Hamdaoui O., Chiha M., Naffrechoux E., Ultrasound-Assisted Removal of Malachite Green from Aqueous Solution by Dead Pine Needles, Ultrason Sonochemistry, 15: 799-807 (2008).
[6] Panizza M., Cerisola G., Removal of Organic Pollutants from Industrial Wastewater by Electrogenerated Fenton’s Reagent, Water Research, 35: 3987-3992 (2001).
[7] Lin S.H., Peng C.F., Treatment of Textile Wastewater by Electrochemical Method, Water Research, 28: 277-282 (1994).
[8] Anbiaa M., Asl-Hariria S., Ashrafizadehb S.N., Adsorptive Removal of Anionic Dyes by Modified Nanoporous Silica SBA-3, Applied Surface Science, 256: 3228-3233 (2010).
[9] Pang S.C., Chin S.F., Ling Ch.Y., Controlled Synthesis of Manganese Dioxide Nanostructures via a Facile Hydrothermal Route, Journal of Nanomaterial, 2012: 1-7 (2012).
[10] Xiao T.D., Strutt P.R., Benaissa M., Chen H., Kear B.H., Synthesis of High Activate-Site Density Nanofibrous MnO2-Base Materials with Enhanced Permeabilities, Nanostructured Materials, 10: 1051-1061 (1998).
[11] عبدالشاهی نژاد، س،؛ برقعی، س.م،؛ سیدی، م،؛ حذف کروم شش ظرفیتی توسط نانو ذره های فریت، نشریه شیمی و مهندسی شیمی ایران، 34، 29 تا 37 (۱۳۹۴).
[12] Suna D., Zhanga X., Wu Y., Liu X., Adsorption of Anionic Dyes from Aqueous Solution on Fly Ash, Journal of Hazardous. Materials, 181: 335-342 (2010).
[13] Foletto E.L., Collazzo G.C., Mazutti M.A., Jahn S.L., Adsorption of Textile Dye on Zinc Stannate Oxide: Equilibrium, Kinetic and Thermodynamics Studies, Separation Science and Technology, 46: 2510 (2011).
[14] Sartape A.S., Mandhare A.M., Jadhav V.V., Raut P.D., Anuse M.A., Kolekar S.S., Removal of Malachite Green Dye from Aqueous Solution with Adsorption Technique Using Limonia Acidissima (wood apple) Shell as Low Cost Adsorbent, Arabian Journal Chemistry, [in press] (2013). doi:10.1016/j.arabjc.2013.12.019
[15] Ahmad A., Rafatullah M., Sulaiman O., Ibrahim M.H., Hashim R., Scavenging Behaviour of Meranti Sawdust in the Removal of Methylene Blue from Aqueous Solution, Journal of Hazardous. Materials, 170: 357-365 (2009).
[16] Santhi T., Manonmani S., Smitha T., Kinetics and Isotherm Studies on Cationic Dyes Adsorption onto Annona Squamosa Seed Activated Carbon, Industrial & Engineering Chemistry Research, 2: 287-295 (2010).
[17] Lagergren S., “About the Theory of So-Called Adsorption of Soluble Substances”, Kung. Sven. Vetenskapsak. Handl, (1898).
[18] McKay G., Ho Y.S., Pseudo-Second order Model for Sorption Processes, Process Biochem, 34: 451-465 (1999).
[19] Santhi T., Manonmani S., Smitha T., Removal of Malachite Green from Aqueous Solution
by Activated Carbon Prepared from the Epicarp of Ricinus Communis by Adsorption
, Journal of Hazardous Materials, 179: 178-186 (2010).
[20] Mohan D., Singh K. ., Singh G., Kumar K., Removal of Dyes from Wastewater Using Fly Ash, a Low-Cost Adsorbent, Industrial & Engineering Chemistry Research, 41: 3688-3695 (2002).
[21] Shokrolahzade Tehrani A., Shadravan A., Kashefi Asl M., Investigation of Kinetics and Isotherms of Boron Adsorption of Water Samples by Natural Clinoptilolite and Clinoptilolite Modified with Sulfuric Acid, Iranian Journal of Chemistry and Chemical Engineering, 35(4): 21-32 (2016).
[22] فروتن، ع؛ خدادادی دربان، ا؛ صراف مأموری، ر؛ کیانی نیا، ی؛ رهنمای مقدم، ب؛ بررسی ویژگی‌های جذب سطحی فلز نیکل با استفاده از سه جاذب nZVI، D-nZVI و کانی دیاتومه، نشریه شیمی و مهندسی شیمی ایران، (۳)۳۴: ۱ تا ۱۱ (۱۳۹۴).
[23] Dahri M. Kh., Rahimi Kooh M.R., Lim L., Application of Casuarina Equisetifolia Needle for the Removal of Methylene Blue and Malachite Green Dyes from Aqueous Solution, Alexandria Engineering. J., 54: 1253-1263 (2015).
[24] Gautam R.K., Rawat V., Banerjee S., Sanromanb M.A., Soni Sh., Singh S.K., Chattopadhyaya M.Ch., Synthesis of Bimetallic Fe–Zn Nanoparticles and its Application Towards Adsorptive Removal of Carcinogenic Dye Malachite Green and Congo Red in Water, Journal of Molecular Liquids, 212: 227–236 (2015).
[25] Hemmati F., Norouzbeigi R., Sarbisheh F., Shayesteh H., Malachite Green Removal Using Modified Sphagnum Peat Moss as a Low-Cost Biosorbent: Kinetic, Equilibrium and Thermodynamic Studies, Journal of Taiwan Institute Chemical Engineering, 58:482-489 (2016).
[27] Zheng H., Qi J., Jiang R., Gao Y., Li X., Adsorption of Malachite Green by Magnetic Litchi Pericarps: A Response Surface Methodology Investigation, Journal of Environmenatal Management, 162: 232-239 (2015).
[28] Ngah W., Ariff N. ,Hashim A., Hanafiah M., Malachite Green Adsorption onto Chitosan Coated Bentonite Beads: Isotherms, Kinetics and Mechanism, Clean – Soil, Air, Water, 38: 394–400 (2010).
[29] Mane V.S., Mall I.D., Srivastava V.C., Use of Bagasse Fly Ash as an Adsorbent for the Removal of Brilliant Green Dye from Aqueous Solution, Dyes & Pigments, 73: 269-278 (2007).
[30] حمیدی، ع؛ خزاعلی، ا؛ خضعلی، ف؛ مطالعه ترمودینامیک و هم دماهای جذب سطحی کادمیم (ІІ) بر روی نانو ذره‌های روی اکسید، نشریه شیمی و مهندسی شیمی ایران، (۴)۳۴: ۲۳ تا ۳۰ (۱۳۹۴).