A Review of the Trends of Development and Performance Improvement of Polymeric Membranes for Helium Separation and Extraction

Document Type : Review Article


Membrane Science and Technology Research Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, I.R. IRAN


Due to its unique characteristics, helium gas has found widespread applications, particularly in medical, nuclear and space industries. At the present, natural gas is considered as the main industrial source of helium and should contain at least 0.05 mole% helium in order to make the extraction process which is primarily based on cryogenic economically available. Because of multiple advantages of membrane technology, helium extraction using membranes has been the subject of numerous studies for more than half a century. Some inorganic membranes such as silica have shown good performance for helium separation, but the fabrication of such membranes is costly and complicated. On the contrary, polymeric membranes are low-priced and require performance improvement through modifications. Besides blending and employment of inorganic fillers, one of the most effective ways to improve the performance of these membranes is the development of copolymeric membranes. In addition, a hybrid system comprising a combination of cryogenic distillation, membrane technology, and pressure swing adsorption can lead to lower energy consumption and costs.


Main Subjects

[1] Daly J.W., Helium Recovery from LNG, "International Petroleum Technology Conference", Doha, Qatar (2005).
[2] Rufford T.E., Chan K.I., Huang S.H., May E.F., A Review of Conventional and Emerging Process Technologies for the Recovery of Helium from Natural Gas, Adsorption Science & Technology, 32(1): 49-72 (2014).
[3] Welch R.V., Helium-What About It?, The Journal of Canadian Petroleum, 24(05) (1985).
[4] King H., Helium: A Byproduct of the Natural Gas Industry, Awailable at: http://geology.com/articles/ helium/
[5] Kim D., "Helium Extraction from LNG End Flash, Master thesis, Department of Energy and Process Engineering",  Norwegian University of Science and Technology (2014).
[8] بنده علی، سمانه، تأثیر نانو ذرات سیلیکا بر کارایی غشای پلیمری آلیاژی ABS/PVAc برای جداسازی هلیم از متان، نشریه علوم و مهندسی جداسازی، (2)6: 1 تا 10 (1393).
[9] Jue M.L., Lively R.P., Targeted Gas Separations Through Polymer Membrane Functionalization, Reactive and Functional Polymers, 86(0): 88-110 (2015).
[10] Sanders D.F., Smith Z.P., Guo R., Robeson L.M., McGrath J.E., Paul D.R., Freeman B.D., Energy-Efficient Polymeric Gas Separation Membranes for a Sustainable Future: A Review, Polymer, 54(18): 4729-4761 (2013).
[11] Scholes C.A., Ghosh U., Helium Separation Through Polymeric Membranes: Selectivity Targets, Journal of Membrane Science, 520(0): 221-230 (2016).
[12] Stern S.A., Sinclair T.F., Gareis P.J., Vahldieck N.P., Mohr P.H., Helium Recovery by Permeation, Industrial & Engineering Chemistry, 57(2): 49-60 (1965).
[13] Nakoryakov V., Vitovsky O., Seryapin A., Helium Production Technology Based on Natural Gas Combustion and Beneficial use of Thermal Energy, Thermal Science, 20(suppl. 1): 19-22 (2016).
[14] Kohl A.L., Nielsen R.B., "Gas Purification, Chapter 15 - Membrane Permeation Processes", Gulf Professional Publishing, Houston (1997).
[15] Scholes C.A., Stevens G.W., Kentish S.E., Membrane Gas Separation Applications in Natural Gas Processing, Fuel, 96(0): 15-28 (2012).
[16] Li F., Qu Y., Zhao M., Efficient Helium Separation of Graphitic Carbon Nitride Membrane, Carbon, 95(0): 51-57 (2015).
[17] Mannan H.A., Mukhtar H., Murugesan T., Nasir R., Mohshim D.F., Mushtaq A., Recent Applications of Polymer Blends in Gas Separation Membranes, Chemical Engineering & Technology, 36(11): 1838-1846 (2013).
[18] Liu L., Wang D.K., Martens D.L., Smart S., da Costa J.C.D., Binary Gas Mixture and Hydrothermal Stability Investigation of Cobalt Silica Membranes, Journal of Membrane Science, 493(0): 470-477 (2015).
[19] Shelekhin A.B., Dixon A.G., Ma Y.H., Adsorption, Permeation, and Diffusion of Gases in Microporous Membranes. II. Permeation of Gases in Microporous Glass Membranes, Journal of Membrane Science, 75(3): 233-244 (1992).
[20] Gantzel P.K., Merten U., Gas Separations with High-Flux Cellulose Acetate Membranes, Industrial & Engineering ChemistryProcess Design and Development, 9(2): 331-332 (1970).
[21] Fischer S., Thümmler K., Volkert B., Hettrich K., Schmidt I., Fischer K., Properties and Applications of Cellulose Acetate, Macromolecular Symposia, 262(1): 89-96 (2008).
[23] Zadhoush A., Hosseini S.S., Mousavi S.M., The Importance and Influence of Rheological Characteristics of Polymer Solutions in Phase Inversion Process and Morphology of Polymeric Membranes, Iranian Journal of Polymer Science and Technology (PERSIAN), 28(5): 351-371 (2016).
[24] López-González M., Saiz E., Riande E., Guzmán J., Transport of Hhelium in Polycarbonate Membranes, Polymer, 43(2): 409-413 (2002).
[25] Kumazawa H., Sada E., Nakata K., Kawashima N., Kataoka S., Tada K, Enrichment of Helium by Asymmetric Hollow-Fiber Membrane of Cellulose Triacetate, Journal of Applied Polymer Science, 53(1): 113-119 (1994).
[26] Peterson E.S., Stone M.L., Helium Separation Properties of Phosphazene Polymer Membranes, Journal of Membrane Science, 86(1-2): 57-65 (1994).
[27] McCaffrey R.R., Cummings D.G., Gas Separation Properties of Phosphazene Polymer Membranes, Separation Science and Technology, 23(12-13): 1627-1643 (1988).
[28] Hellums M.W., Koros W.J., Husk G.R., Paul D.R., Fluorinated Polycarbonates for Gas Separation Applications, Journal of Membrane Science, 46(1): 93-112 (1989).
[29] Kim T.-H., Koros W.J., Husk G.R., Advanced Gas Separation Membrane Materials: Rigid Aromatic Polyimides, Separation Science and Technology, 23(12-13) 1611-1626 (1988).
[30] C. O'brien K., Koros W.J., Husk G.R., Polyimide Materials Based on Pyromellitic Dianhydride for the Separation of Carbon Dioxide and Methane Gas Mixtures, Journal of Membrane Science, 35(2): 217-230 (1988).
[31] Min K.E., Paul D.R,  Effect of Tacticity on Permeation Properties of Poly(methyl methacrylate), Journal of Polymer Science Part B: Polymer Physics, 26(5): 1021-1033 (1988).
[32] Bikson B., Nelson J.K., Muruganandam N., Composite Cellulose Acetate/poly(methyl methacrylate) Blend Gas Separation Membranes, Journal of Membrane Science, 94(1): 313-328 (1994).
[33] Kharitonov A.P., Taege R., Ferrier G., Teplyakov V.V., Syrtsova D.A., Koops G.H., Direct fluorination—Useful Tool to Enhance Commercial Properties of Polymer Articles, Journal of Fluorine Chemistry, 126(2): 251-263 (2005).
[34] Kharitonov A.P., Kharitonova L.N., Surface Modification of Polymers by Direct Fluorination: A Convenient Approach to Improve Commercial Properties of Polymeric Articles, Pure and Applied Chemistry, 81(3): 451-471 (2009).
[35] Kiplinger C.L., Persico D.F., Lagow R.J., Paul D.R., Gas Transport in Partially Fluorinated Low-Density Polyethylene, Journal of Applied Polymer Science, 31(8): 2617-2626 (1986).
[36] Langsam M., Anand M., Karwacki E.J., Substituted Propyne Polymers, I. Chemical Surface Modification of Poly[1-(trimethylsily)propyne] for Gas Separation Membranes, Gas Separation & Purification, 2(4): 162-170 (1988).
[37] Xiao Y., Low B.T., Hosseini S.S., Chung T.S., Paul D.R., The Strategies of Molecular Architecture and Modification of Polyimide-Based Membranes for CO2 Removal from Natural Gas - A Review, Progress in Polymer Science, 34(6): 561-580 (2009).
[38] Tin P.S., Chung T.S., Liu Y., Wang R., Liu S.L., Pramoda K.P., Effects of Cross-Linking Modification on Gas Separation Performance of Matrimid Membranes, Journal of Membrane Science, 225(1-2):77-90 (2003).
[39] Liu Y., Wang R., Chung T.-S., Chemical Cross-Linking Modification of Polyimide Membranes for Gas Separation, Journal of Membrane Science, 189(2): 231-239 (2001).
[40] Shao L., Chung T.-S., Goh S.H., Pramoda K.P., Transport Properties of Cross-Linked Polyimide Membranes Induced by Different Generations of Diaminobutane (DAB) Dendrimers, Journal of Membrane Science, 238(1–2): 153-163 (2004).
[42] Hosseini S.S., Omidkhah M.R., Zarringhalam Moghaddam A., Pirouzfar V., Krantz W.B.,Tan N.R., Enhancing the Properties and Gas Separation Performance of PBI–Polyimides Blend Carbon Molecular Sieve Membranes via Optimization of the Pyrolysis Process, Separation and Purification Technology, 122(0): 278-289 (2014).
[43] Campo M.C., Magalhães F.D., Mendes A., Carbon Molecular Sieve Membranes from Cellophane Paper, Journal of Membrane Science, 350(1–2): 180-188 (2010).
[44] Centeno T.A., Fuertes A.B., Carbon Molecular Sieve Gas Separation Membranes Based on Poly(vinylidene chloride-co-vinyl chloride), Carbon, 38(7): 1067-1073 (2000).
[45] Hosseini S.S., Chung T.S., Carbon Membranes from Blends of PBI and Polyimides for N2/CH4 and CO2/CH4 Separation and Hydrogen Purification, Journal of Membrane Science, 328(1–2): 174-185 (2009).
[46] Favvas E.P., Heliopoulos N.S., Papageorgiou S.K., Mitropoulos A.C., Kapantaidakis G.C., Kanellopoulos N.K., Helium and Hydrogen Selective Carbon Hollow Fiber Membranes: The Effect of Pyrolysis Isothermal Time, Separation and Purification Technology, 142(0): 176-181 (2015).
[47] Hosseini S.S., Teoh M.M., Chung T.S., Hydrogen Separation and Purification in Membranes of Miscible Polymer Blends with Interpenetration Networks, Polymer, 49(6): 1594-1603 (2008).
[48] Bushell A.F., Attfield M.P., Mason C.R., Budd P.M., Yampolskii Y., Starannikova L., Rebrov A., Bazzarelli F., Bernardo P., Carolus Jansen J., Lanč M., Friess K., Shantarovich V., Gustov V., Isaeva V., Gas Permeation Parameters of Mixed Matrix Membranes Based on the Polymer of Intrinsic Microporosity PIM-1 and the Zeolitic Imidazolate Framework ZIF-8, Journal of Membrane Science, 427(0): 48-62 (2013).
[49] Cong H., Radosz M., Towler B.F., Shen Y., Polymer–Inorganic Nanocomposite Membranes for Gas Separation, Separation and Purification Technology, 55(3): 281-291 (2007).
[50] Ahn J., Chung W.-J., Pinnau I., Song J., Du N., Robertson G.P., Guiver M.D., Gas Transport Behavior of Mixed-Matrix Membranes Composed of Silica Nanoparticles in a Polymer of Intrinsic Microporosity (PIM-1), Journal of Membrane Science, 346(2): 280-287 (2010).
[51] Fryčová M., Sysel P., Hrabánek P., Koèiøík M., Brabec L., Zikánová A., Bernauer B., Èapek P., Hejtmánek V., Helium Permeation through Mixed Matrix Membranes Based on Polyimides and Silicalite-1, Diffusion Fundamentals, 11(0): 1-2 (2009).
[52] Hosseini S.S., Li Y., Chung T.-S., Liu Y., Enhanced Gas Separation Performance of Nanocomposite Membranes Using MgO Nanoparticles, Journal of Membrane Science, 302(1-2): 207-217 (2007).
[53] Song Q., Nataraj S.K., Roussenova M.V., Tan J.C., Hughes D.J., Li W., Bourgoin P., Alam M.A., Cheetham A.K., Al-Muhtaseb S.A., Sivaniah E., Zeolitic Imidazolate Framework (ZIF-8) Based Polymer Nanocomposite Membranes for Gas Separation, Energy & Environmental Science, 5(8): 8359-8369 (2012).
[54] Ordoñez M.J.C., Balkus Jr K.J., Ferraris J.P., Musselman I.H., Molecular Dieving Realized with ZIF-8/Matrimid® Mixed-Matrix Membranes, Journal of Membrane Science, 361(1–2): 28-37 (2010).
[55] Feijani E.A., Mahdavi H., Tavasoli A., Poly (vinylidene fluoride) Based Mixed Matrix Membranes Comprising Metal Organic Frameworks for Gas Separation Applications, Chemical Engineering Research and Design, 96(0): 87-102 (2015).
[56] Hao L., Li P., Chung T.-S., PIM-1 as an Organic Filler to Enhance the Gas Separation Performance of Ultem Polyetherimide, Journal of Membrane Science, 453(0): 614-623 (2014).
[57] Preston W.E., Barlow J.W., Paul D.R., Effect of Crystallinity on Gas Permeation in Miscible Polycarbonate–Copolyester Blends, Journal of Applied Polymer Science, 29(3): 845-852 (1984).
[58] Kapantaidakis G.C., Kaldis S.P., Dabou X.S., Sakellaropoulos G.P., Gas Permeation through PSF-PI Miscible Blend Membranes, Journal of Membrane Science, 110(2): 239-247 (1996).
[59] Ohya H., Kudryavsev V., Semenova S.I., "Polyimide Membranes: Applications, Fabrications and Properties", Gordon and Breach, (1996).
[60] Pirouzfar V., Hosseini S.S., Omidkhah M.R., Moghaddam A.Z., Modeling and Optimization of Gas Transport Characteristics of Carbon Molecular Sieve Membranes through Statistical Analysis, Polymer Engineering & Science, 54(1): 147-157 (2014).
[61] Choi J.I., Jung C.H., Han S.H., Park H.B., Lee Y.M., Thermally Rearranged (TR) Poly(benzoxazole-co-pyrrolone) Membranes Tuned for High Gas Permeability and Selectivity, Journal of Membrane Science, 349(1–2): 358-368 (2010).
[62] Zimmerman C.M., Koros W.J., Polypyrrolones for Membrane Gas Separations. I. Structural Comparison of Gas Transport and Sorption Properties, Journal of Polymer Science Part B: Polymer Physics, 37(12): 1235-1249 (1999).
[64] Macchione M., Jansen J.C., De Luca G., Tocci E., Longeri M., Drioli E., Experimental Analysis and Simulation of the Gas Transport in Dense Hyflon® AD60X Membranes: Influence ofResidual Solvent, Polymer, 48(9): 2619-2635 (2007).
[65] Jansen J.C., Macchione M., Drioli E., On the Unusual Solvent Retention and the Effect on the Gas Transport in Perfluorinated Hyflon AD® Membranes, Journal of Membrane Science, 287(1): 132-137 (2007).
[66] Robeson L.M., The Upper Bound Revisited, Journal of Membrane Science, 320(1–2): 390-400 (2008).
[67] Pan C.Y., Gas Separation by Permeators with High-Flux Asymmetric Membranes, AIChE Journal, 29(4): 545-552 (1983).
[68] Giglia S., Bikson B., Perrin J.E., Donatelli A.A., Mathematical and Experimental Analysis of Gas Separation by Hollow Fiber Membranes, Industrial & Engineering Chemistry Research, 30(6): 1239-1248 (1991).
[69] Ahsan M., Hussain A., Mathematical Modeling of Helium Recovery from a Multicomponent Fuel Gas with Polymeric Membrane, International Journal of Chemical Engineering and Applications, 6(3): 173-178  (2015).
[70] Hale P., Lokhandwala K., Helium Recovery from Gas Streams, USP 2005/0217479 A1 (2005)
[71] Laguntsov N.I., Kurchatov I.M., Karaseva M.D., Solomakhin V.I., Churkin P.A., Influence of Membrane Selectivity on Helium Recovery from Natural Gas, Petroleum Chemistry, 56(4): 344-348 (2016).
Laguntsov N.I., Kurchatov I.M., Karaseva M.D., Membrane Recycle System Usage for Helium Extraction from Natural Gas, Physics Procedia, 72(0): 93-97 (2015).
[73] Castro-Dominguez B., Leelachaikul P., Messaoud S.B., Takagaki A., Sugawara T., Kikuchi R., Oyama S.T., The Optimal Point within the Robeson Upper Boundary, Chemical Engineering Research and Design, 97(0): 109-119 (2015).