Investigation of Promoters and Their Synergetic Effects on Carbon Nanotubes Supported Cobalt Catalysts for Fischer-Tropsch Synthesis

Document Type : Research Article

Authors

1 School of Chemistry, College of Science, University of Tehran, Tehran 1513746911, I.R. IRAN

2 Research Institute of Petroleum Industry (RIPI), Tehran, I.R. IRAN

Abstract

CNT-based cobalt catalysts were made with Ca, Ce, K and Zr promoters. Then the addition of Ca / Ca and K / Zr was carried out by impregnation method and the synergetic effect of an alkaline, alkaline earth promoter with a transition metal or lanthanide promoter was investigated. The structural properties of the catalysts were investigated based on technologies such as X-Ray Diffraction (XRD), total surface area measurement and pore size distribution of catalysts (BET), atomic emission (ICP) and Temperature-Programmed Reduction (TPR). The FTS performance of the catalysts was studied in a fixed-bed micro-reactor under conditions of 220 °C, 18bar, and H2/CO = 2 (v/v). The results of the test showed that simultaneously adding Ca-Ce to the Co / CNT catalyst and its synergetic effect increased the conversion rate of CO by 7%, and also by adding K-Zr promoters to the Co / CNT catalyst and their synergetic effect C5 + selectivity increased From 72% to 82%.

Keywords

Main Subjects


[1] Fischer F., Tropsch H., Preparation of Synthetic Oil Mixtures (Synthol) From Carbon Monoxide and Hydrogen, Brennst -Chem., 4(1): 276–285 (1923).
[2] Eilers J., Posthuma S. A., Sie S. T., The Shell Middle Distillate Synthesis Process(SMDS), Catal. Lett., 7(1): 253–270 (1990).
[3] Cybulski A., Edvinsson R., Liquid-Phase Methanol Synthesis: Modelling of a Monolithic Reactor, Chem. Eng. Sci., 48(20): 3463-3478 (1993).
[4] Adhikari S., Fernando S.D., Haryanto A., Hydrogen Production from Glycerol: An Update, Energy Conversion and Management, 50(10): 2600–2604(2009).
[5] Ahmed I., Gupta K., Characteristic of Hydrogen and Syngas Evolution from Gasification and Pyrolysis of Rubber, International Journal of Hydrogen Energy, 36(7): 4340-4347 (2011).
[6] Ahmed I., Gupta A.K., Pyrolysis and Gasification of Food Waste: Syngas Characteristics and Char Gasification Kinetics, Applied Energy, 87(1): 101–108 (2010).
[8] مرادی، غلامرضا؛ مهبد بصیر، محمد؛ طائب، عباس؛ تأثیر زیرکونیم روی مشخصات فیزیکی و عملکرد کاتالیست کبالت در سنتز فیشر ـ تروپش، نشریه شیمی و مهندسی شیمی ایران، (2)22 : 17 تا 24 (1382).
[9] Dry M. E., "Handbook of Heterogeneous Catalysis", Wiley-VCH, New Yorck (2008).
[10] Eliseeva O. L., Tsapkina M. V., Dement’eva O. S., Davydov P. E., Kazakov A. V., Lapidus A.L., Promotion of Cobalt Catalysts for the Fischer-Tropsch Synthesis with Alkali Metals, Kinetics and Catalysis, 54(2): 207–212 (2013).
[11] Shi H.B., Li Q., Dai X.P. Yu, C.C., Shen S.K., Resolving Flow Details in Slurry Bubble Columns Used for Fischer-Tropsch Synthesis Using Computational Fluid Dynamics, Studies in Surface Science and Catalysis., 147(1): 265-270 (2004).
[12] de la Osa A.R., De Lucas A., Romero A., Valverde J.L., Sánchez P., Fischer–Tropsch Diesel Production over Calcium-Promoted Co/Alumina Catalyst: Effect of Reaction Conditions, Fuel, 90(5): 1935–1945 (2011).
[13] Schulz H., Short History and Present Trends of Fischer–Tropsch Synthesis, Appl. Catal. A., 186(1-2): 3–12 (1999).
[16] Girardon J. S., Constant-Griboval A., Gengembre L., Chernavskii P. A., Khodakov A. Y., Optimization of the Pretreatment Procedure in the Design of Cobalt Silica Supported Fischer–Tropsch Catalysts, Catal. Today., 106(1-4): 161–165 (2005).
[17] Xu D., Li W., Duan H., Ge Q., Xu H., Effect of Pt, Ru and Pd Promoters on the Performance of Co/gamma-Al2O3Catalysts for Fischer–Tropsch Synthesis, Chin. J. Catal., 26(9): 780–793 (2005).
[18] Gregory R. Johnson a, Alexis T. B., Effects of Lewis acidity of Metal Oxide Promoters on the Activity and Selectivity of Co-Based Fischer–Tropsch Synthesis Catalysts, Journal of Catalysis., 338: 250–264 (2016).
[19] Ernst B, Libs S., Chaumette P., Kiennemann A., Preparation and Characterization of Fischer–Tropsch Active Co/SiO2 catalysts, Appl. Catal. A., 186(1-2): 145-168 (1999).
[20] Jacobs G., Das T. K., Zhang Y., Li J., Racoillet G., Davis B. H., Fischer–Tropsch Synthesis: Support, Loading, and Promoter Effects on the Reducibility of Cobalt Catalysts, Appl. Catal. A, 233(1-2): 263-281 (2002).
[21] Roh F. r, Lindvåg O. A., Holme A. n., Blekkan E. A., Fischer–Tropsch Synthesis Over Cobalt Catalysts Supported on Zirconia-Modified Alumina, Catal. Today., 58(4): 247-254 (2000).
[22] Hilmen A. M., Schanke D., Holmen A., TPR Study of the Mechanism of Rhenium Promotion of Alumina-Supported Cobalt Fischer-Tropsch Catalysts Catalysts, Catal. Lett., 38(3): 143-147 (1996).
[24] Oukaci R., Sigleton A. H., Goodwin Jr., Comparison of Patented Co F–T Catalysts Using Fixed-Bed and Slurry Bubble Column Reactors, Appl. Catal. A., 186(1-2): 129-144 yhg(1999).
[25]  Post M.F.M., Sie S.T.B., Process for the Preparation of Hydrocarbons, Eur.Patent EP 0167 215 A2, (1985).
[26]  Feller A., Claeys M., Steen E.V., Cobalt Cluster Effects in Zirconium Promoted Co/SiO2 Fischer–Tropsch, Catalysts J. Catal., 185(1): 120-130 (1999).
[27] Moradi G. R.  , Basir M. M., Taeb A., Kiennemann A., Promotion of Co/SiO2 Fischer–Tropsch Catalysts with Zirconium, Catal. Commu., 4(1): 27-32 (2003).
[28] Horiuchi T., HidakH. a, FukuT., Kubo Y., Horio M., Suzuki K. Mori T., Effect of Added Basic Metal Oxides on CO2 Adsorption on Alumina at Elevated Temperatures, Appl. Catal.A Gen., 167(2): 195-202 (1998).