Influence of Various Types of Zeolitic Supports on Catalytic Properties and Performance of Cr-Based Nanocatalysts Used in C2H6/CO2 Oxidative Dehydrogenation Process

Document Type : Research Article


1 Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, I.R. IRAN

2 Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996 , Tabriz, I.R. IRAN


In this study, the applicability of zeolitic supports and effect of zeolitic supports on catalytic properties and performance of Cr-based nanocatalysts used in oxidative dehydrogenation of ethane with CO2 were investigated. In this regard, a series of chromium oxide-based catalysts containing 3.4 wt.% of Cr were prepared by incipient wetness impregnation of clinoptilolite, SAPO-34 and HZSM-5 chosen among the natural zeolites, zeo-type materials and synthetic zeolites, respectively. To this aim, clinoptilolite was purchased and SAPO-34 and HZSM-5 were successfully synthesized via the hydrothermal method as evidenced by XRD, FESEM, BET and EDX techniques. The formation of fewer agglomerations and better dispersion of surface nanoparticles over cubic-like particles of ZSM-5 compared to other zeolitic supports were
confirmed by FESEM images. The TPD-NH3 results revealed that more desirable acidic properties were obtained by employing clinoptilolite compared to other zeolitic supports, resulting in high stability.
Based on the EDX results, a higher dispersion of chromium species could be achieved using synthetic supports especially HZSM-5 due to their much higher specific surface area. This reflects in the higher content of redox Cr species stabilized in comparison with SAPO-34 and clinoptilolite, which alongside homogenous and fine surface nanoparticles and fewer agglomerations account for the superior catalytic performance of Cr/ZSM-5. Based on the characterization results, the low surface area of clinoptilolite and low dispersion of Cr species in Cr/Clinoptilolite and surface coverage and micropore blockage in Cr/SAPO-34 are mainly responsible for low ethylene yield of this catalyst compared with implementing ZSM-5 support. It was found that Cr/ZSM5 effectively dehydrogenated ethane to ethylene in the presence of CO2 at 700 °C, giving 45.4% ethylene yield. Coke deposition as a result of the presence of strong acid sites is mainly responsible for decreasing trend observed for catalytic performance with increasing reaction time.


Main Subjects

 [1]  Michorczyk P., Ogonowski J., KuÅ›trowski P., Chmielarz L., Chromium Oxide Supported on Mcm-41 as a Highly Active and Selective Catalyst for Dehydrogenation of Propane with CO2, Applied Catalysis A: General, 349(1-2): 62-69 (2008).
[2]  Michorczyk P., Ogonowski J., Zeńczak K., Activity of Chromium Oxide Deposited on Different Silica Supports in the Dehydrogenation of Propane with CO2 - a Comparative Study, Journal of Molecular Catalysis A: Chemical, 349(1-2): 1-12 (2011).
[3] Michorczyk P., Pietrzyk P., Ogonowski J., Preparation and Characterization of Sba-1-Supported Chromium Oxide Catalysts for CO2 Assisted Dehydrogenation of Propane, Microporous and Mesoporous Materials, 161: 56-66 (2012).
[4] Mimura N., Takahara I., Inaba M., Okamoto M., Murata K., High-Performance Cr/H-Zsm-5 Catalysts for Oxidative Dehydrogenation of Ethane to Ethylene with CO2 as an Oxidant, Catalysis Communications, 3(6): 257-262 (2002).
[5] Shi X., Ji S., Wang K., Oxidative Dehydrogenation of Ethane to Ethylene with Carbon Dioxide over Cr-Ce/SBA-15 Catalysts, Catalysis Letters, 125(3-4): 331-339 (2008).
[6] Takehira K., Ohishi Y., Shishido T., Kawabata T., Takaki K., Zhang Q., Wang Y., Behavior of Active Sites on Cr-MCM-41 Catalysts During the Dehydrogenation of Propane with CO2, Journal of Catalysis, 224(2): 404-416 (2004).
[7] Wang S., Murata K., Hayakawa T., Hamakawa S., Suzuki K., Dehydrogenation of Ethane with Carbon Dioxide over Supported Chromium Oxide Catalysts, Applied Catalysis A: General, 196(1): 1-8 (2000).
[8] Wang D., Xu M., Shi C., Lunsford J.H., Effect of Carbon Dioxide on the Selectivities Obtained During the Partial Oxidation of Methane and Ethane over Li+/MgO Catalysts, Catalysis Letters, 18(4): 323-328 (1993).
[9] Kong L., Li J., Zhao Z., Liu Q., Sun Q., Liu J., Wei Y., Oxidative Dehydrogenation of Ethane to Ethylene over Mo-Incorporated Mesoporous SBA-16 Catalysts: The Effect of Moox Dispersion, Applied Catalysis A: General, 510: 84-97 (2016).
[10] Ishchenko E.V., Kardash T.Y., Gulyaev R.V., Ishchenko A.V., Effect of K and Bi Doping on the M1 Phase in MoVTeNbO Catalysts for Ethane Oxidative Conversion to Ethylene, Applied Catalysis A: General, 514: 1-13 (2016).
[11] Elbadawi A.H., Ba-Shammakh M.S., Al-Ghamdi S., Razzak S.A., Reduction Kinetics and Catalytic Activity of VOx/Γ-Al2O3-ZrO2 for Gas Phase Oxygen Free ODH of Ethane, Chemical Engineering Journal, 284: 448-457 (2016).
[12] Cheng Y., Zhang F., Zhang Y., Miao C., Hua W., Yue Y., Gao Z., Oxidative Dehydrogenation of Ethane with CO2 over Cr Supported on Submicron ZSM-5 Zeolite, Chinese Journal of Catalysis, 36(8): 1242-1248 (2015).
[14] Zhang F., Wu R., Yue Y., Yang W., Gu S., Miao C., Hua W., Gao Z., Chromium Oxide Supported on ZSM-5 as a Novel Efficient Catalyst for Dehydrogenation of Propane with CO2, Microporous and Mesoporous Materials, 145(1-3): 194-199 (2011).
[15] Setnička M., Bulánek R., Čapek L., Čičmanec P., N-Butane Oxidative Dehydrogenation over VOx-HMS Catalyst, Journal of Molecular Catalysis A: Chemical, 344(1-2): 1-10 (2011).
[16] Madeira L.M., Portela M.F., Catalytic Oxidative Dehydrogenation of N-Butane, Catalysis Reviews, 44(2): 247-286 (2002).
[19] Asgari N., Haghighi M., Shafiei S., Synthesis and Physicochemical Characterization of Nanostructured Pd/Ceria-Clinoptilolite Catalyst Used for P-Xylene Abatement from Waste Gas Streams at Low Temperature, Journal of Chemical Technology and Biotechnology, 88(4): 690-703 (2013).
[20] Vafaeian Y., Haghighi M., Aghamohammadi S., Ultrasound Assisted Dispersion of Different Amount of Ni over Zsm-5 Used as Nanostructured Catalyst for Hydrogen Production Via CO2 Reforming of Methane, Energy Conversion and Management, 76: 1093-1103 (2013).
[22] Mimura N., Okamoto M., Yamashita H., Oyama S.T., Murata K., Oxidative Dehydrogenation of Ethane over Cr/ZSM-5 Catalysts Using CO2 as an Oxidant, The Journal of Physical Chemistry B, 110(43): 21764-21770 (2006).
[23] Shen Z., Liu J., Xu H., Yue Y., Hua W., Shen W., Dehydrogenation of Ethane to Ethylene over a Highly Efficient Ga2O3/HZSM-5 Catalyst in the Presence of CO2, Applied Catalysis A: General, 356(2): 148-153 (2009).
[24] Lisi L., Marchese L., Pastore H.O., Frache A., Ruoppolo G., Russo G., Evaluating the Catalytic Performances of SAPO-34 Catalysts for the Oxidative Dehydrogenation of Ethane, Topics in Catalysis, 22(1-2): 95-99 (2003).
[25] Marchese L., Frache A., Gatti G., Coluccia S., Lisi L., Ruoppolo G., Russo G., Pastore H.O., Acid SAPO-34 Catalysts for Oxidative Dehydrogenation of Ethane, Journal of Catalysis, 208(2): 479-484 (2002).
[26] Botavina M.A., Martra G., Agafonov Y.A., Gaidai N.A., Nekrasov N.V., Trushin D.V., Coluccia S., Lapidus A.L., Oxidative Dehydrogenation of C3-C4 Paraffins in the Presence of CO2 over CrOx/SiO2 Catalysts, Applied Catalysis A: General, 347(2): 126-132 (2008).
[27] Çulfaz M., Yağız M., Ion Exchange Properties of Natural Clinoptilolite: Lead-Sodium and Cadmium-Sodium Equilibria, Separation and Purification Technology, 37(2): 93-105 (2004).
[28] Garcia-Basabe Y., Rodriguez-Iznaga I., de Menorval L.-C., Llewellyn P., Maurin G., Lewis D.W., Binions R., Autie M., Ruiz-Salvador A.R., Step-Wise Dealumination of Natural Clinoptilolite: Structural and Physicochemical Characterization, Microporous and Mesoporous Materials, 135(1-3): 187-196 (2010).
[29] Leung S., Barrington S., Zhao X., El-Husseini B.,  Effect of Particle Size on Physio-Chemical Properties of Clinoptilolite as Feed Additive, Microporous and Mesoporous Materials, 95(1-3): 48-56 (2006).
[30] Liu G., Tian P., Li J., Zhang D., Zhou F., Liu Z., Characterization and Catalytic Properties of SAPO-34 Synthesized Using Diethylamine as a Template, Microporous and Mesoporous Materials, 111(1-3): 143-149 (2008).
[31] Izadbakhsh A., Farhadi F., Khorasheh F., Sahebdelfar S., Asadi M., Feng Y.Z., Effect of SAPO-34's Composition on Its Physico-Chemical Properties and Deactivation in MTO Process, Applied Catalysis A: General, 364(1-2): 48-56 (2009).
[32] Emrani P., Fatemi S., Ashraf Talesh S., Effect of Synthesis Parameters on Phase Purity, Crystallinity and Particle Size of SAPO-34, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 30(4): 29-36 (2011).
[33] صادقپور پ., حقیقی م., بررسی تأثیر غلظت منگنز و نیکل در سنتز کاتالیست نانوساختار MnNiAPSO-34 برای تبدیل متانول به الفین های سبک, نشریه شیمی و مهندسی شیمی ایران, (1)34 : 11 تا 27 (1394).
[34] Durgakumari V., Subrahmanyam M., Subba Rao K.V., Ratnamala A., Noorjahan M., Tanaka K., An Easy and Efficient Use of Tio2 Supported Hzsm-5 and TiO2+HZSM-5 Zeolite Combinate in the Photodegradation of Aqueous Phenol and P-Chlorophenol, Applied Catalysis A: General, 234(1-2): 155-165 (2002).
[35] Carrero A., van Grieken R., Paredes B., Hybrid Zeolitic-Mesostructured Materials as Supports of Metallocene Polymerization Catalysts, Catalysis Today, 179(1): 115-122 (2012).
[36] فیروزی م., بقالها م., اسدی م., سنتز زئولیت ZSM-5 به عنوان کاتالیست فرایند تبدیل متانول به پروپیلن, نشریه شیمی و مهندسی شیمی ایران, (2)31 : 21 تا 26 (1391).
[37] Jansson I., Suárez S., Garcia-Garcia F.J., Sánchez B., Zeolite-Tio2 Hybrid Composites for Pollutant Degradation in Gas Phase, Applied Catalysis B: Environmental, 178: 100-107 (2015).
[38] Salem A., Akbari Sene R., Removal of Lead from Solution by Combination of Natural Zeolite-Kaolin-Bentonite as a New Low-Cost Adsorbent, Chemical Engineering Journal, 174(2-3): 619-628 (2011).
[39] Izadbakhsh A., Farhadi F., Khorasheh F., Sahebdelfar S., Asadi M., Yan Z.F., Key Parameters in Hydrothermal Synthesis and Characterization of Low Silicon Content SAPO-34 Molecular Sieve, Microporous and Mesoporous Materials, 126(1-2): 1-7 (2009).