Computational Study of Regioselectivity in Synthesis of Substituted 1,2,3-Triazoles from Click Reaction of Azides with Propiolates Using Quantum Chemistry Methods

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran

Abstract

Click synthesis of 1,4 and 1,5-disubstituted 1,2,3triazoles from benzyl azide and ethyl propiolate has been studied by means of Density Functional Theory (DFT) from the structural and thermochemical viewpoints in the gas phase and in presence of three different solvent, water, dioxane and tetrahydrofuran (THF) using polarized continuum model. On the basis of calculated thermodynamical results, it has been demonstrated that  the production of 1,4-disubstituted regioisomer is more favorable than 1,4-disubstituted regioisomer. Moreover, a significant decrease in the computed values of the reaction enthalpy and free energy changes was obtained in the three solution phases in comparison with the gas phase. Furthermore, the thermodynamical preference in using water as the solvent was obtained in comparison with dioxane and THF to that is in agreement with experimental observations. In next step, electronic and structural origins of regioselectivity were investigated via analysis of variations in the calculated values of some key bond lengths and bond orders. Finally, to present a more concise interpretation on the regioselectivity, we performed the topological analysis of electronic indices via Quantum Theory of Atoms in Molecule (QTAIM) approach.

Keywords

Main Subjects


[2] (a) Yadav P., Devprakash D., Senthilkumar G., Benzothiazole: Different Methods of Synthesis and Diverse Biological Activities, Int. J. Pharm. Sci. Drug. Res., 42: 1-7 (2011).
     (b) Shafiee A, Jalilian A.R, Tabatabaiee.Y M, Syntheses, Antibacterial and Antifungal Activities of Substituted-thiazolo-1,3,4-thiadiazoles, 1,3,4-oxadiazoles and 1,2,4-thiazoles, Iran. J. Chem. Chem. Eng. (IJCCE), 17:14-20(1998).
[3] (a) Xue H., Gau Y., Twamley B., Shreeve J.M., New Energetic Salts Based on Nitrogen-Containing Heterocycles, Chem. Mater., 17:191-197 (2005).
      (b) Shaabani A, Farhangi E, Shaabani Sh, Arapid Combinatorial Library Synthesis of Benzazolo[2,1-b]quinazolinones and Triazolo[2,1-b]quinazolinones, Iran. J. Chem. Chem. Eng. (IJCCE), 32(1): 3-10 (2013).
[4] Kumar A., Alimenla B., Jamir  L., Sinha D., Sinha. U. B., Solvent-Free Methodologies for Organic Brominations Using Quaternary Ammonium Tribromides, Org. Commun., 5: 64-70 (2012).
[6] Huisgen R., 1,3-Dipolar Cycloadditions. Past and Future, Angew. Chem. Int. Ed. Engl., 2:565-574 (1963).
[7] Demko Z.P.,Sharpless K.B., Preparation of 5-Substituted 1H-Tetrazoles from Nitriles in Water, J. Org. Chem., 66:7945-7950 (2001).
[8] Kolb H.C., Finn M. G., Sharpless K.B.,Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chem. Int. Ed. Engl., 40: 2004-2010 (2001).
[9] (a) Bock V.D., Hiemstra H., Maarseveen F., Eur  J.H., CuI-Catalyzed Alkyne-Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective, J. Org. Chem., 33: 51-57 (2006).
      (b) Souzangarzadeh S,1,3-Dipolar Cycloaddition Reaction of Nitrile Oxides to Isatin Imines, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 31-35(2016).
[10] Ackermann L., K. Potukuchi H., Landsberg D., Vicente R., Copper-Catalyzed “Click” Reaction/Direct Arylation Sequence: Modular Syntheses of 1,2,3-Triazoles, Org. Lett., 10: 3081-3084 (2008).
[11] Yadav P., Devprakash D., Senthilkumar G., Benzothiazole: Different Methods of Synthesis and Diverse Biological Activities, Int. J. Pharm. Sci. Drug. Res., 42:1-8 (2011).
[12] (a) Moses  J.E., Moorhouse  A.D.,The Growing Applications of Click Chemistry, Chem. Soc. Rev., 36:1249-1253 (2007).
       (b) Santoyo G.F., Hernandez  M.F., Azide-alkyne 1,3-dipolar Cycloadditions: a Valuable Tool in Carbohydrate Chemistry, Top. Heterocycl. Chem., 7: 133-137 (2007).
     (c) Tron C.G., Pirali T., Billington R.A., Canonico P.L.,Sorba G., Genazzani A.A., Click Chemistry Reactions in Medicinal Chemistry: Applications of the 1,3-Dipolar Cycloaddition Between Azides and Alkynes, Med. Res. Rev., 28: 278-284 (2008).
[13] Pedersen D.S., Abell A., 1,2,3-Triazoles in Peptidomimetic Chemistry, Eur. J. Org. Chem, 48: 2399-2408 (2011).
       (e) Svobodova H., Noponen V., Kolehmainen  E., Sievanen E., Recent Advances in Steroidal Supramolecular Gels, RSC Adv., 2:4985-4991 ( 2012).
[14] (a)Sirisha  B., Narsaiah  B., Yakaiah  T., Gayatri  G., NarahariSastry  G., Raghu Prasad  M., RaghuramRao A., Synthesis and Theoretical Studies on Energetics of Novel N- and O-Perfluoroalkyltriazole Tagged Thienopyrimidines-Their Potential as Adenosine Receptor Ligands, Eur. J. Med. Chem., 45:1739-1744 (2010).
     (b) Lewis  W.G., Magallon  F.G., Fokin V.V., Finn  M.G., Discovery and Characterization of Catalysts for Azide-Alkyne Cycloaddition by Fluorescence Quenching, J. Am. Chem. Soc., 126: 9152-9156 (2004).
       (c) Straub B.F., µ-Acetylide and µ-Alkenylidene Ligands in “Click” Triazole Syntheses, Chem. Commun., 25:3868-3874 (2007).
[16] Khaghaninejad S., Heravi M.M., Hosseinnejad T., Oskooie  H.A., Bakavoli  M., Regio-Selective Synthesis of 5-Substituted 1H-Tetrazoles Using Ionic Liquid [BMIM]N3 in Solvent-Free Conditions: a Click Reaction, Res. Chem. Intermed., DOI: 10.1007/s11164-015-2105-3
[19] (a) Hosseinnejad  T., Dinyari M., Computational Study on Stereoselective Synthesis of Substituted1H-Tetrazoles via a Click Reaction: DFT and QTAIM Approaches, Comput. Theor. Chem., 1071:53-61 (2015).
      (b) Ding  S., Jia  G., Sun  J., Ir-Catalyzed Intermolecular Azide-Alkyne Cycloaddition of Internal Thioalkynes under Mild Conditions, Angew. Chem. Int. Ed, 53:1877-1884 (2014).
[20] Qiong  L., Guochen  J., Jianwei  S., Zhenyang  L.,Theoretical Studies on the Regioselectivity of Iridium-Catalyzed 1,3-Dipolar Azide-Alkyne Cycloaddition Reactions, J. Org. Chem., 79:11970-11980 (2014).
[21]Boz E., Tuzun N.S., Reaction Mechanism of Ruthenium-Catalyzed Azide-Alkyne Cycloaddition Reaction: A DFT Study, Organomet. Chem., 724:167-172 (2013).
[22] Becer C.R., Hoogenboom R., Schubert U.S., Click Chemistry Beyond Metal-Catalyzed Cycloaddition., Angew. Chem. Int., 48: 4900-4906 (2009).
[23] Becke A.D., A New Mixing of Hartree-Fock and Local Density-Functional Theories, J. Chem. Phys., 98: 1372-1378 (1993).
[24] Hosseinnejad T., Fattahi B., Heravi  M.M., Computational Studies on the Regioselectivity of Metal-Catalyzedsynthesis of 1,2,3Triazoles via Click Reaction: a Review, J. Mol. Model, 21: 264-270 (2015).
[27] (a) Bader R.F.W., A Quantum Theory of Molecular Structure and Its Applications, Chem. Rev., 91: 893-928 (1991).
      (b) Bader R.F.W., Mac Dougall P.J., Lau C.D.H., Bonded and Nonbonded Charge Concentrations and Their Relation to Molecular Geometry and Reactivity, J. Am. Chem. Soc., 106:1594-1600 (1984).
[28] Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon  M.S., Jensen  J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A., General Atomic and Molecular Electronic Structure System, J. Comput. Chem., 14: 1347-1355 (1993).
[30] Bader R.F.W., AIM2000 Program ver 2.0, McMaster University, Hamilton, 2000.
[31] Cortes F., Bader R.F.W.,Complementarity of QTAIM and MO Theory in the Study of Bonding in Donor–Acceptor Complexes,Coord. Chem. Rev., 249: 633-640 (2005).