Preparation and Characterization of Polyvinylpyrrolidone/ Carboxyl Functionalized Multiwalled Carbon Nanotube Nanocomposite

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, I.R. IRAN

2 Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, I.R. IRAN

3 Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood

Abstract

Polyvinylpyrrolidone (PVP)/carboxyl functionalized multiwalled carbon nanotube (MWCNT-COOH) nanocomposite was prepared in aqueous media. The structure, morphology, and thermal characterization of PVP/MWCNT-COOH nanocomposite were done by FT-IR, SEM, TGA and DSC techniques. According to the DSC analysis, the glass transition temperature of 159 °C is observed for PVP/MWCNT-COOH (5% w/w). The addition of MWCNT-COOH (5% W/W) to PVP increases the thermal stability of PVP to 400 °C which was indicated in TGA thermogram.The FT-IR spectra showed the hydrogen bonding has been takes place between MWCNT-COOH and PVP in the PVP/MWCNT-COOH (5% w/w) nanocomposite. The SEM images of the PVP/MWCNT-COOH (5% w/w) nanocomposite clearly exhibited the presence of MWCNT-COOH in PVP polymer matrix.

Keywords

Main Subjects


[1] دیده بان، خدیجه؛ اکبری، مینا؛ عادل­خانی، هادی؛ مطالعه رفتار کامپوزیت پلی آکریل آمید روی اکسید به عنوان الکترود در ابرخازنهای الکتروشیمیایی، نشریهشیمیومهندسیشیمیایران، (2)34: 41 تا 46 (1394).
[2] Qian D., Dickey E. C., Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites, Appl. Phys. Lett., 76: 2868-2870 (2000).
[3] Wagner H.D., Lourie O., Feldman Y., Tenne R., Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix, Appl. Phys. Lett., 72: 188-190 (1998).
[4] Schadler L.S., Giannaris S.C., Ajayan P.M., Load Transfer in Carbon Nanotube Epoxy Composites, Appl. Phys. Lett., 73: 3842-3844 (1998).
[6] Benoit J.M., Corraze B., Chauvet O., Localization, Coulomb Interactions, and Electrical Heating in Single-Wall Carbon Nanotubes/Polymer Composites, Phys. Rev. B., 65: 241405 (2002).
[7] Sreekumar T.V., Liu T., Min B.G., Guo H., Kumar S., Hauge R H., Smalley R.E., Polyacrylonitrile Single-Walled Carbon Nanotube Composite Fibers, Adv. Mater., 16: 58–61 (2004).
[8] Wu M., Shaw L.L., On the Improved Properties of Injection-Molded, Carbon Nanotube-Filled PET/PVDF Blends, J. Power Sources, 136: 37–44 (2004).
[9] Sen R., Zhao B., Perea D., Itkis M. E., Hu H., Love J., Bekyarova E., Haddon, R. C., Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning, Nano Lett., 4: 459–464 (2004).
[10] Martin C.A., Sandler J.K.W., Windle A.H., Schwarz M.K., Bauhofer W., Schulte K., Shaffer M.S.P., Electric Field-Induced Aligned Multi-Wall Carbon Nanotube Networks in Epoxy Composites, Polymer,46: 877–886 (2005).
[12] Mrozek R.A., Kim B.S., Holmberg V.C., Taton T.A. Homogeneous, Coaxial Iiquid Crystal Domain Growth from Carbon Nanotube Seeds, Nano Lett., 3: 1665–1669 (2003).
[13] Huang, J.E., Li, X. H., Xu, J.C., Li, H.L., Well-Dispersed Single-Walled Carbon Nanotube/Polyaniline Composite Films, Carbon, 41: 2731–2736 (2003).
[14] Velasco-Santos C., Martinez-Hernandez A.L., Fisher F.T., Ruoff R., Castano V. M., Improvement of Thermal and Mechanical Properties of Carbon Nanotube Composites Through Chemical Functionalization, Chem. Mater., 15: 4470–4475.
[15] Coleman J.N., Cadek M., Blake R., Nicolosi V., Ryan K.P., Belton C., Fonseca A., Nagy J.B., Gun’ko Y.K., Blau W.J., High-Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase, Adv. Funct. Mater., 14:, 791–798 (2004).
[16] Ma H.M., Zeng, J.J., Realff, M.L., Kumar, S., Schiraldi, D.A., Processing, Structure, and Properties of Fibers from Polyester/Carbon Nanofiber Composites, Compos. Sci. Technol., 63: 1617–1628 (2003).
[17] Zeng J.J., Saltysiak B., Johnson W.S., Schiraldi D.A., Kumar, S. Processing and Properties of Poly(methyl methacrylate)/Carbon Nano Fiber Composites, Composites Part B,35: 173–178 (2004).
[18] Pham J.Q., Mitchell C.A., Bahr, J.L., Tour, J.M., Krishanamoorti, R. Green, P.F., Glass Transition of Polymer/Single-Walled Carbon Nanotube Composite Films, J. Polym. Sci. B-Polym. Phy., 41: 3339–3345 (2003).
[19] Grunlan J.C., Mehrabi A.R., Bannon M.V., Bahr J.L., Water-Based single-Walled-Nanotube-Filled Polymer Composite with an Exceptionally Low Percolation Threshold, Adv. Mater., 16: 150–153 (2004).
[20] Shenogin S., Xue L.P., Ozisik R., Keblinski P., Cahill D.G., Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites, J. Appl. Phys., 95: 8136–8144 (2004).
[21] Guo H., Sreekumar T.V., Liu T., Minus M., Kumar S., Structure and Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films, Polymer, 46: 3001–3005 (2005).
[22] Baek J.B., Lyons C.B., Tan L.S., Grafting of Vapor-Gown Carbon Nanofibers Via in Situ Polycondensation of 3-Phenoxybenzoic Acid in Poly(phosphoric acid), Macromolecules, 37: 8278–8285 (2004).
[23] Abraham J.K., Philip B., Witchurch A., Varadan V.K., Reddy, C.C., A Compact Wireless Gas Sensor Using a Carbon Nanotube/PMMA Thin Film Chemiresistor, Smart Mater. Struct., 13: 1045–1049 (2004).
[24] Jin Z.X., Sun X., Xu G.Q., Goh S.H., Ji W., Nonlinear Optical Properties of Some Polymer/Multi-Walled Carbon Nanotube Composites, Chem. Phys. Lett.,318: 505–510 (2000).
[25] Philip B., Xie J.N., Chandrasekhar A., Abraham J., Varadan V.K., A Novel Nanocomposite from Multiwalled Carbon Nanotubes Functionalized with a Conducting Polymer, Smart Mater. Struct., 13: 295–298 (2004).
[26] Lin Y., Rao A.M., Sadanadan B., Kenik E.A., Sun Y.P., Functionalizing Multiple-Walled Carbon Nanotubes with Aminopolymers, J. Phys. Chem. B, 106: 1294–1298 (2002).
[27] Riggs J.E., Guo Z.X., Carroll D.L., Sun Y.P., Strong Luminescence of Solubilized Carbon Nanotubes, J. Am. Chem. Soc., 122: 5879–5880 (2000).
[28] Bühler V., “Polyvinylpyrrolidone Excipients for Pharmaceuticals: Povidone, Crospovidone and Copovidone”, Berlin, Heidelberg, New York: Springer, (2005).
[29] Altemeier W.A., Schiff, L., Gall, E.A., Giuseffi, J., Freiman, D., Mindrum, G., Braunstein, H., Physiological and Pathological Effects of Long-Term Polyvinylpyrrolidone Retention, A.M.A. Archives of Surgery, 69: 309–314 (1954).
[30] Achaby M.E., Essassi E.M., Qaiss A., Coted Multi-Walled Carbon Nanotubes for the Preparation of Nanocomposite Films, Plastic Research Online, 10.1002/spepro.004342 (2012).
[31] Khan W. S., Asmatulu R., Eltabey M.M, Electrical and Thermal Characterization of Electrospun PVP Nanocomposite Fibers, J. Nanomater., 10.1155/2013/160931 (2013).
[32] Tripathy M. K., Mohamed M., Shah S.A.A., Mohamed R., Majeed A.B.A., Solute Solvent Interactions of Polyvinylpyrrolidone Wrapped Single Walled Carbon Nanotubes (PVP-SWNTs) in Water by Viscometric Studies, Orient. J. Chem., 29 (2): 539-544 (2013).
[33] Sudha P.N., Aisverya S., F-Multiwalled Carbon Nanotube-Grafted-Chitosan/Polyvinyl Pyrrolidone Blends: Preparation and Characterization, Der Pharmacia Lettre., 6(3): 9-14 (2014).
[34] Zhang K., Choi H.J., Kim J.H., Preparation and Characteristics of Electrospoun Multiwalled Carbon Nanotube/Polyvinylpyrrolidone Nanocomposite Nanofiber, J. Nanosci. Nanotechnol., 11: 5446-5449 (2011).
[35] Huang S., Zhou L., Li M.C., Wu Q., Kojima Y., Zhou D., Preparation and Properties of Electrospoun Poly(vinylpyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers, Materials, 9: 523-536 (2016).
[37] Haaf F., Sanner A., Strub F., Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses, Polymer J., 17(1): 143-152 (1985).
[38] Koo C.M., Ham H.T., Choi M.H., Kim S.O., Chung I.J., Characteristics of Polyvinylpyrrolidone-Layered Silicate Nanocomposites Prepared by Attrition Ball Milling, Polymer, 44: 681-689 (2003).