Molecular Dynamics Simulation of the 1-Butyl-3-methylimidazolium Nitrate Ionic Liquid and the Dynamical Behavior of the Ionic Liquid-Water Binary Mixtures

Document Type : Research Article

Authors

Department of Chemistry and Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, I.R. IRAN

Abstract

For long last time water has been considered as an inimical contaminant to pure Ionic Liquids (ILs) because the presence of a low amount of water drastically changes the properties of ILs. But, water is now a very important partner for ILs because mixing the IL-water is an easy strategy to control and access to unique properties of both of them. Applying this type of binary mixtures also provides a broad application in different fields. In this work, molecular dynamics simulations were used to study the details of the dynamical behavior of the binary mixture of 1-butyl-3-methylimidazolium nitrate ([bmim][NO3]) and water in different molar fractions in order to discover the influence of water addition on the properties of the ionic liquid. The dynamics of systems studied by the computing of mean-square displacement and self-diffusion coefficients of species. The presence of water causes significant enhancement of ionic self-diffusion coefficients. In neat IL and the concentrated IL solution, self-diffusion of the cation is higher than that of the anion; however, in the binary mixtures with the water molar fraction greater than or equal to 0.25, the anions diffuse faster than the cations.

Keywords

Main Subjects


[1] Welton T., Room-Temperature Ionic Liquids: Solvent for Synthesis and Catalysis, Chem. Rev, 99: 2071-2084 (1999).
[3] Keskin S., Kayrak-Talay D., Akman U., Hortaçsu Ö., A Review of Ionic Liquids Towards Supercritical Fluid Applications, J. Supercrit. Fluids, 43: 150-180 (2007).
[4] Armand M., Endres F., MacFarlane D. R., Ohno H., Scrosati B., Ionic-Liquid Materials for the Electrochemical Challenges of the Future, Nat. Mater, 8: 621-629 (2009).
[5] Feng R., Zhao D., Guo Y., Revisiting Characteristics of Ionic Liquids: A Review for Future Application Development, J. Environ. Prot, 1: 95-104 (2010).
[8] Freire M. G., Carvalho P. J., Femandes A. M., Marrucho I. M., Queimada A. J., Coutinho J. A. P., Surface Tensions of Imidazolium Based Ionic Liquids: Anion, Cation, Temperature and Water Effect, J. Colloid Interface Sci, 314: 621-630 (2007).
[10] Seddon K. R., Stark A., Torres M. J., Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids, Pure Appl. Chem, 72(12): 2275-2287 (2000).
[12] Swatloski R. P., Spear S. K., Holbrey J. D., Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc., 124: 4974-4975 (2002).
[13] Moreno M., Simonetti E., Appetecchi G. B., Carewska M., Montanino M., Kim G.-T., Loeffler N., and Passerini S., Ionic Liquid Electrolytes for Safer Lithium Batteries I. Investigation around Optimal Formulation, J. Electrochem. Soc,164:A6026-A6031 (2017).
[14] Gutowski K. E., Broker G. A., Willauer H. D., Huddleston J. G., Swatloski R. P., Holbrey J. D., Rogers R. D., Controlling the Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations, J. Am. Chem. Soc, 125: 6632-6633 (2003).
[15] Kohno Y., Ohno H., Ionic liquid/ Water Mixtures: from Hostility to Conciliation, Chem. Commun, 48: 7119-7135 (2012).
[16] Giernoth R., Task-Specific Ionic Liquids, Angew. Chem. Int. Ed, 49: 2834–2839 (2010).
[18] Fadeeva T. A., Husson P., Devin J. A., Gomes M. F. C., Greenbaum S. G., Castner E. W., Interaction Between Water and 1-Butyl-1-Methylpyrrolidinium Ionic Liquids, J. Chem. Phys, 143: 064503(1-12)  (2015).
[20] Marekha B. A., Bria M., Moreau, DeWaele I., Miannay F. A., Smortsova Y., Takamuku T., Kalugin O. N., Kiselev M., Idrissi A., Intermolecular Interactions in Mixtures of 1-n-Butyl-3-Methylimidazolium Acetate and Water: Insights from IR, Raman, NMR Spectroscopy and Quantum Chemistry Calculations, J. Mol. Liq, 210: 227–237 (2015).
[21] Joshua E. S. J. Reid, Richard J. Gammons, John M. Slattery, Adam J. Walker, and Seishi Shimizu, Interactions in Water−Ionic Liquid Mixtures: Comparing Protic and Aprotic Systems, J. Phys. Chem. B, 121: 599−609 (2017).
[23] Salma U., Usula M., Caminiti R., Gontrani L., Plechkova N. V.,  Seddon K. R., X-Ray and Molecular Dynamics Studies of Butylammonium Butanoate–Water Binary Mixtures, Phys. Chem. Chem. Phys, 19: 1975-1981 (2017).
[24] Pramanik R., Sarkar S., Ghatak C., Setua P., Rao V. G., Sarkar N., Effect of Water on the Solvent Relaxation Dynamics in an Ionic Liquid Containing Microemulsion of 1-Butyl-3-Methyl Imidazolium Tetrafluoroborate/TritonX-100/cyclohexane, Chem. Phys. Lett, 490: 154–158 (2010).
[25] Tran C. D., Depaoli Lacerda S. H., Oliveira D., Absorption of Water by Room-Temperature Ionic Liquids, Effect of Anions on Concentration and State of Water, Appl. Spectrosc, 52(2): 152-157 (2003).
[26]Menjoge A., Dixon J., Brennecke J. F., Maginn E. J., and Vasenkov S., Influence of Water on Diffusion in Imidazolium-Based Ionic Liquids: A Pulsed Field Gradient NMR Study, J. Phys. Chem. B, 113: 6353-6359 (2009).
[27] Smith W., Forester T. R., Todorov I. T., The DL_POLY Molecular Simulation Package, V.2.18. Daresbury Laboratory: Daresbury, U.K. (2007).
[28] Nośe S. A., Unified Formulation of the Constant Temperature Molecular Dynamics Methods, J. Chem. Phys, 81: 511-519 (1984).
[29] Hoover W. G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 31: 1695-1697 (1985).
[30] Allen M.P., Tildesley D.J., “Computer Simulation of Liquids”, Clarendon: Oxford, U.K. (1987).
[31] Lopes J. N. C., Deschamps J., Pádua A. A. H., Modeling Ionic Liquids Using a Systematic All-Atom Force Field, J. Phys. Chem. B, 108: 2038-2047 (2004).
[32] Lopes J. N. C., Pádua A. H., CL&P: A Generic and Systematic Force Field for Ionic Liquids Modeling, Theor. Chem. Acc, 131: 1129−1140 (2012).
[33] Schrderöder C., Comparing Reduced Partial Charge Models with Polarizable Simulations of Ionic Liquids, Phys. Chem. Chem. Phys, 14, 3089–3102 (2012).
[34] Berendsen H. J. C., Postina J. P. M., van Gunsteren W. F., Herinans J., Pullinan B., (Eds.), “Intermolecular Forces”, Reidel, Dordrecht, (1981).
[35] Kowsari M. H., Alavi S., Ashrafizaadeh M., Najafi B., Molecular Dynamics Simulation of Imidazolium-Based Ionic Liquids. I. Dynamics and Diffusion Coefficient, J. Chem. Phys, 129: 224508 (2008).
[37] Wu Y., Tepper H. L., Voth G. A., Flexible Simple Point-Charge Water Model with Improved Liquid-State Properties, J. Chem. Phys, 124: 024503 (2006).
[38] Chen W. T., Hsu W.Y., Lin M.Y., Tai C.C., Wang S.P., Wen I., Isolated BMI+ Cations Are More than Isolated PF6 Anions in the Room Temperature 1-Butyl-3-methylimidazolium Hexafluorophosphate (BMI-PF6) Ionic Liquid, J. Chinese Chem. Soc, 57: 1293-1298 (2010).