Two-Stage Natural Gas Reciprocating Compressor Simulation Based on AGA8 Equation of State

Document Type : Research Article


The Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN


In this study, a two-stage natural gas reciprocating compressor is simulated based on ideal and real models. To this end, a zero-dimensional numerical method based on the crank angle is developed. For this simulation, control volumes including compressor cylinders, suction, and discharge chambers with equivalent mass and energy equations along with piston movement, valve dynamic, and mass flow rate through valve and orifice equations and heat transfer equation for heat-exchanger are investigated. For real gas model, the AGA8 equation of state has been used for computing thermodynamic properties. Simulated results compared and validated with the previous experimental results for air reciprocating compressor. Then, the developed model is used to predict compressor behavior and performance parameters. It suction and discharge pressure was considered 4.122 and 9.795 MPa respectively. Predicted results show that intermediate pressure for simulation based on real gas (4.015 MPa) is lower than ideal gas (4.093 MPa). Furthermore, the mass flow rate based on the real model (730.67 kg/h) is higher than the ideal model (710.3 kg/h). In addition, discharge gas temperature prediction with the ideal model is lower than the real model.


Main Subjects

[1] Scalabrin G., Bianco G., Experimental Thermodynamic Analysis of a Variable Speed Open Reciprocating Refrigeration Compressors, International Journal of Refrigeration, 17(1): 68-75 (1994).
[2] Hsieh  W.H., Wu  T.T., Experimental Investigation of Heat Transfer in a High-Pressure Reciprocating Gas Compressor, Experimental Thermal and Fluid Science, 13: 44-54 (1996).
[4] Popovic P., Shapiro H.N., A semi-Emperical Method for Modeling a Reciprocating Compressor in Refrigeration Systems, ASHRAE Transactions, 101(2): 367-382 (1995).
[5] Negrao S.O., Erthal R.H., Andrade D. H., Silva L.W., A Semi-Emprical Model for the Unsteady-State Simulation of Reciprocating Compressors for Household Refrigeration Application, Applied Thermal Engineering, 31: 1114-1124 (2011).
[6] Li W., Simplified Steady-State modelling for Hermetic Compressors with Focus on Extrapolation, International Journal of Refrigeration, 35: 1722-1733 (2012).
[7] Disconzi P., Pereira E. L.L., Deschamps C.J., "Development of an in-Cylinder Heat Transfer Correlation for Reciprocating Compressors", International Compressor Engineering Conference at Purdue, West Lafayette, USA, (2012).
[8] Yasar O., Kocas M., Computational Modeling of Hermetic Reciprocating Compressors, International Journal of High Performance Computing Applications, 21(1): 30-41 (2007).
[9] Escanese F., Perez-Segarra C.D., Rigola J., Serra J.M., Pons J., "Numerical Simulation of Hermetic Reciprocating Compressors", International Compressor Engineering Conference, Purdue, 193-198 (1996).
[10] Bassi F., Pelagalli L., Rebay S., Betto A., Orefice M., "Numerical Simulation of a Reciprocating Compressor for Household Refrigerators", International Compressor Engineering Conference, Purdue, 97-104 (2000).
[11] Castaing-Lasvignottes J., Gibout S., Dynamic Simulation of Reciprocating Refrigeration Compressors and Experimental Validation, International Journal of Refrigeration, 21: 381-389 (2010). 
[12] Gasparella G. A., Longo A., Unsteady State Analysis of the Compression Cycle of a Hermetic Reciprocating Compressor, International Journal of Refrigeration, 26: 681-689 ( 2003).
[13] Farzaneh-Gord M., Niazmand A., Deymi-Dashtebayaz M., Rahbari H. R., Thermodynamic Analysis of Natural Gas Reciprocating Compressors Based on Real and Ideal Gas Models, International Journal of Refrigeration, 56: 186-197 ( 2014).
[14] Farzaneh-Gord M., Niazman  A., Deymi M., Optimizing Reciprocating Air Compressors Design Parameters Based on First Law Analysis, U.P.B.Scientific Bulletin, Seriese D: Mechanical Engineering, 13-26 (2013).
[15] Farzaneh-Gord M., Khoshnazar H., Valve Fault Detection for Single-Stage Reciprocating Compressors, Journal of Natural Gas and Engineering, 35: 1239-1248 (2016).
[16] Farzaneh-Gord M., Niazmand A., Deymi-Dashtebayaz M., Rahbari, H. R., Effects of Natural Gas Compositions on CNG (Compressed Natural Gas) Reciprocating Compressors Performance, Energy, 90: 1152-1162 (2015).
[17] Feyzi F., Riazi M. R., Shaban H.I., Ghotbi, H.,  Improving Qubic Equations of State for Heavy Reservoir Fluid and Critical Region, Chemical Engineering Communication, 167: 147-166 (1998).
[18] قنبری، محمد جواد؛ مرادی، غلامرضا؛ مدلسازی ترمودینامیکی تعادل فازی هیدرات گازهای تبریدی با استفاده از معادله حالت PRSV2، نشریه شیمی و مهندسی شیمی ایران، (1)35: 125 تا 132 (1395).
[19] Soave G.S., A Noncubic Equation of State for the Treatment of Hydrocarbon Fluids at Reservoir, Industrial & Engineering Chemistry Research., 34: 3981-3994 (1995).
[20] Jaeschke M., Audibert S., Van Caneghem P., Humphtreys A.E., Janssen R., Pellei Q., High Accuracy Compressibility Factor for Natural Gases and Similar Mixtures by Use of a Truncated Virial Equation, GERG Technical Monograph, , TM2 (1989).
[21] Kunz O., Klimeck R., Wagner W., Jaeschke  M., The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures, GERG, TM 15 (2007).
[22] Kunz O., Wagner W.,  The GERG-2008 Wide-Range Equation of State for Natural Gases and other Mixtures: An Expansion of GERG-2004, Journal of Chemical & Engineering Data, 57: 3032-3091 (2012).
[23] AGA8-DC92, "Compressibility and Super Compressibility for Natural Gas and other Hydrocarbon Gases", Transmission Meaurement Committee, pp. Arlington,VA. Report No. 8, AGAcatalog No. XQ 1285,(1992).
[24] ISO-12213-2. "Natural Gas- Calculation of Compression Factor-Part 2: Calculation Using Molar-Composition Analysis", ISO, Ref. No. ISO- 12213-2:1997(E).
[25] Elhaj M., Gu F., Ball A.D., Albarbar A., Al-Qattan M., Naid A., Numerical Simulation and Experimental Study of a Two-Stage Reciprocating Compressor for Condition Monitoring, Mechanical Systems and Signal Processing, 22: 374-389 (2008). 
[26] Stosic N., Hanjalic K., Contribution Towards Modelling of Two-Stage Reciprocating Compressors, International Journal of Mechanical Science, 19(8): 439-445 (1977).
[27] Reinholtz H.H., Mabie C.F.,  "Mechanic and Dynamic of Machinery", John Wiley and Sons Inc. (1987).
[28] Habing R.A., "Flow and Plate Motion in Compressor Valves", Ph.D Thesis, University of Twente (2005).
[29] Soedel W.,  "Sound and Vibration of Positive Displacement Compressors", CRC Press (2006).
[30] Srinivas M.N., Padmanabhan, C., Computationally Efficient Model for Refrigeration Compressor Gas Dynamics, International Journal of Refrigeration, 25: 1083-1092 (2002).
[31] Shah  R.k., Sekulic, D.P., "Funementals of Heat Exchanger Design", John Wiley & Sons Inc. (2003).
[32] Rao R.V., Patel V.K., Thrmodynamic Optimization of Cross Flow Plte-Fin Heat Exchanger Using a Particle Swarm Optimization Algorithm, International Journal of Thermal Science, 49: 1712-1721 (2010).
[33] Serth R.W.,  "Process heat transfer", Elsevier Science and Technology Books (2007).
[34] Sun S.Y., Ren T.R., New Method of Thermodynamic Computation for a Rciprocating Compressor: Computer Simulation of Working Process, International Journal of Mechanical Sciences, 37: 343-353 (1994).