A Theoritical Mechanistic Investigation Into the Reduction of PtIV[Cl4(dach)] (dach = diaminocyclohexane) Complex with Ascorbate

Document Type : Research Article


Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN


Although anticancer properties of platinum(II) complexes have been approved, due to the hydrolysis of these complexes before arriving at the target cell, platinum(IV) complexes are generally used as an anticancer prodrug. Density Functional Theory (DFT) was employed to investigate the reduction of anticancer prodrug PtIV[Cl4(dach)] (dach = diaminocyclohexane) by monoanionic ascorbate via an inner sphere mechanism as proposed by Elding. The results obtained from the reduction by different forms of ascorbate (monomeric, dimeric, and hydrated) showed the dimer to be much more reactive. This was attributed to the one ascorbate acting as a base through partial abstraction of the proton from the other. The results were validated by performing natural bond orbital (NBO) analysis on the theoretical transition structures related to the reduction process.


Main Subjects

[1] Jung Y., Lippard J., Direct Cellular Responses to Platinum-Induced DNA Damage, Chem Rev., 107: 1387-1407 (2007).
[2] Johnstone T. C., Wilson J. J., Lippard S. J., Monofunctional and Higher-Valent Platinum Anticancer Agents, Inorg. Chem., 52: 12234−12249 (2013).
[3] Johnstone T. C., Suntharalingam K., Lippard S. J., The Next Generation of Platinum Drugs: Targeted Pt (II) Agents, Nanoparticle Delivery, and Pt (IV) Prodrugs, Chem. Rev., 116: 3436−3486 (2016).
[4] Hall M. D., Hambley T. W., Platinum (IV) Antitumor Compounds: Their Bioinorganic Chemistry, Coord. .Chem. Rev., 232: 49-67 (2002).
[5] Reisner E., Arion V. B., Keppler B. K., Pombeiro A. J. L., Electron-Transfer Activated Metal-Based Anticancer Drugs,  Inorg. Chim. Acta., 361: 1569−1583 (2008).
[6] Graf N., Lippard S. J., Redox Activation of Metal-Based Prodrugs as a Strategy for Drug Delivery, Adv. Drug Deliv. Rev., 64: 993-1004 (2012).
[7] Varbanov H. P., Valiahdi S. M., Kowol C. R., Jakupec M. A.,Galanski M., Keppler B. K., Novel Tetracarboxylatoplatinum (IV) Complexes as Carboplatin Prodrugs, Dalton Trans., 41: 14404–14415 (2012).
[9] Jovanović S., Petrović B., Bugarčić Ž., D, van Eldik R., Reduction of Some Pt (IV) Complexes with Biologically Important Sulfur-Donor Ligands, Dalton Trans., 42: 8890–8896 (2013).
[10] Pichler V., Göschl S., Meier S. M., Roller A., Jakupec M. A. , Galanski M., Keppler B.K., Bulky N (, N)-(di) Alkylethane-1, 2-Diamineplatinum (II) Compounds as Precursors for Generating Unsymmetrically Substituted Platinum (IV) Complexes, Inorg. Chem., 52: 8151–8162 (2013).
[11] Ravera M., Gabano E.,  Zanellato I., Fregonese F., Pelosi G., Plattsc J. A., Osella D., Antiproliferative Activity of a Series of Cisplatin-Based Pt (IV)-Acetylamido/Carboxylato Prodrugs, Dalton Trans., 45: 5300–5309 (2016).
[12] Mujika J.I., Matxan J.M., Theoretical Study of the pH-Dependent Antioxidant Properties of Vitamin C, J. Mol. Model, 19: 1945-1952 (2013).
[13] Choi S., Filotto C., Bisanzo M., Delaney S., Lagasee D., Whitworth J.L., Jusko C.R., Wood N.A., Willingham J., Schwenker A., Spaulding K., Reduction and Anticancer Activity of Platinum (IV) Complexes, Inorg. Chem., 37: 2500–2504 (1998).
[15] Lemma K., Sargeson A.M., Elding L.I., Kinetics and Mechanism for Reduction of Oral Anticancer Platinum (IV) Dicarboxylate Compounds by L-Ascorbate Ions, J. Chem. Soc., Dalton Trans., 0,1167-1172 (2000).
[16] Lemma K., House D.A., Retta N., Elding L.I., Kinetics and Mechanism for Reduction of Halo-and Haloam (M) Ine Platinum (IV) Complexes by L-Ascorbate, Inorg. Chim. Acta, 331: 98-108 (2002).
[17] Dong J., Ren Y., Huo S., Shen S., Xu J., Tian H., Shi T., Reduction of Ormaplatin and cis-Diamminetetrachloroplatinum (IV) by Ascorbic Acid and Dominant Thiols in Human Plasma: Kinetic and Mechanistic Analyses, Dalton Trans., 45: 11326–11337 (2016).
[۱۸] سلیمانی امیری، سمیه؛ کسایی، محمد زمان، بررسی محاسباتی حالت های الکترونی یک تایی، سه تایی و پنج تایی نایترنواتینیل هالوسایلیلن ، نشریه شیمی و مهندسی شیمی ایران، (4): ۸۷ تا ۹۸ (139۵).
[19] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brother E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J.; Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O.,Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D. J., Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, (2009).
[20] Becke A. D., A New Mixing of Hartree – Fock and Local Density‐Functional Theories, J. Chem. Phys., 98: 1372-1377 (1993).
[22] Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G., A Set of F-Polarization Functions for Pseudo-Potential Basis Sets of the Transition Metals Sc Cu, Y Ag and La Au, Chem. Phys. Lett., 208: 111-114 (1993).
[23] Fukui, K., The Path of Chemical Reactions-the IRC Approach, Acc. Chem. Res., 14: 363-368 (1981).
[24] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, J. Chem. Phys., 132: 154104-154106 (2010).
[25]Weigend, F.; Furche, F.; Ahlrichs, R., Gaussian Basis Sets of Quadruple Zeta Valence Quality for Atoms H–Kr, J. Chem. Phys., 119: 12753-12762(2003).
[26] Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A., 102: 1995-2001(1998).
[27] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem., 113: 6378-6396 (2009).
[28] Glendening E. D., Read A. E.; Carpenter, J. E.; Weinhold, F. NBO, Version 3.1; Gaussian, Inc.: Pittsburgh, PA, (2003).