Mathematical Modeling of Clinker Phases and Study of Effective Parameters in Steady-State

Document Type : Research Article

Authors

Department of Chemical Engineering, Urmia University, Faculty of Engineering, Urmia, I.R. IRAN

Abstract

Cement kiln is as the heart of the cement plant in clinker production that gas and solid materials are in contact with each other in countercurrent flow. In this study, a mathematical model of concentrations distribution and clinker phases according to the mass equations and kinetics of chemical reactions in the furnace length were studied. In steady state investigated Modeling whit coating effect and maintaining the property of physical and chemical. The role of effective parameters such as Composition of feed, temperature, activation energy, material flow rate, cross section and rotational speed of kiln investigated on the governing equations and models and these equations solved in steady-state using software Matlab-7. The results of the model were compared with the experimental data that good agreement are between predicted by the model and experimental data and an error of less than 3% for the data obtained from the model and experimental is the acceptable answer for model validation.

Keywords

Main Subjects


[1] عزیزیان، محمدرضا، "تکنولوژی پخت سیمان"، چاپ اول(ویرایش سوم)، تهران، انتشارات کتاب دانشجو-کتاب پدیده (1385).
[2] Lyons J.W.. Experimentation with a Wet-Process Rotary Cement Kiln via the Analog Computer, I &EC Process Design and Development, 1(1): 29-  (1962).
[3] Boateng A.A., Barr P.V., A Thermal Model for the Rotary Kiln Including Heat Transfer Within the Bed, Int. J. Heat Nass Transfer, 39(10): P 2131(1996).
[4] Metzger M.,  “Simplified Mathematical Model of the Rotary Kiln Dynamical Properties” Control of Distributed Parameter Systems Proceedings of the Third IFAC Symposium, Toulouse, France, 29 June–2 July, Pages 491-497 (1983).
[5] Alihosseini.A, Abbaszadeh.A, Bastani. D., The Necessity of Revising Energy Consumption and the Ways of Reducing Energy Consumption in Cement Industry, Journal of Environmental Science and Technology, 6: 75-83 (2015)
[6] Mwaiselage J., Bratveit M., Moen B., Mashalla Y., Cement Dust Exposure and Ventilatory Function Impairment: An Exposure-Response Study, J. Occupy. Environ. Med., 46(7): 658-67 (2004).
[7] Blumberg J.M., “Modeling and Control of the Cement Manufacturing Process”, PhD Thesis,
The University of Manchester (1970).
[8] Schwertmann T., “Themodynamic Aspects of the Counterflow Lime Burning Process”, ZKG International, 9(57): 64-77 (2004).
[9] Yuan J., Darabi P., Salcuden M., Modelling of Flow, Combustion, Clinkers Formation and NOx Emission in Long Rotary Cement Kilns, ZKG International, 12(60): 54-67 (2007).
[10] Zhang Y., Cao S., Shao S., Chen Y., Liu S., Zhang S.,  Aspen Plus-Based Simulation of Air Pollutants Emission, Clean Techn. Environ Policy., 13(3): 459-468 (2011).
[11] Goshayeshi H.R., Kerdar Poor F., Modeling of Rotary Kiln in Cement Industry, Energy and Power Engineering, 8: 23-33 (2016).
[12] Wang S., Lu J., Li W., Li J., Hu Z., Modeling of Pulverized Coal Combustion in Cement Rotary Kiln, Energy & Fuels, 20: 2350-2356 (2006).
[13] Mastorakos E., Massias A., Tsakiroglou C., Goussis D.A., Burganos V.N., Payatakes A.C., CFD Predictions for Cement Kilns Including Flame Modelling, Heat Transfer and Clinker Chemistry, Applied Mathematical Modeling, 23(1): 55-76 (1999).
[13] زنجانی ثابت، علیرضا؛ ثابتی، محمد تقی؛ بهینه ­سازی کوره دوار سیمان به کمک آلگوریتم ژنتیکی، مجله مهندسی شیمی ایران، (10)55 : 4 تا15 (1390).
[14] Goshdastidar P.S., Annadan Unni, V.K., Heat Transfer in Non-reacting Zone of a Cement Rotary Kiln, Tran. ASME, 118: 169-172 (1996).
[15] Holder Bank Company Cement Seminar, “Cement Course,” Swietzerland, (1991).
[16] بیگم مختاری حسینی، زهرا؛ شنوائی زارع، تکتم؛ کمالی­فر، یونس؛ حذف کربن دی اکنسید از گاز دودکش کارخانه سیمان توسط کلینوپتیلولیت طبیعی منطقه سبزوار، نشریه شیمی و مهندسی شیمی، (2)34: 62 تا 72 (1394).
[17] ابول پور، بهادر؛ افصحی، محمد مهدی؛ سهرابی، مرتضی؛ بررسی اثر ریز ساختار آهک بر مدل­سازی احیای هیدروژنی مولیبدن دی سولفید، نشریه شیمی و مهندسی شیمی، (4)30: 25 تا 41 (1390)
[18] Nastac D.C., Kaantee U., Liimatainen J., Hupa M., Mutean M., Influence of P(v) on the Characteristics of Calcium and the Hydration of Clinkers, Advance in Cement Research, 19(3): 93-100 (2007).
[19] Welham N.J., A Parametric Study of the Mechanically Activated Carbon Thermic Reduction of Limonite, Materials Engineering, 9(12): 1189-2000 (1996).
[20] Poulsen L.S., Jakobsen H.J., Skibstedt J., Incorportion of Phosphourus Guset Ions in the Calcium Silicate Phases of Portland Cement from 31P MAS NMR Spectroscopy, Inorganic Chemistry, 49: 5522-5529 (2010).
[21] Alihosseini A.F., Karbalaie ghomi N-S., Dehghani Modavar M., Operational Properties of Organic Composition (Liginin Sulfonante) in Portland Cement- Acomparative Study with Gypsum in Portland Cement, Journal of Applied Chemical Sciene International, 2(1): 41-48 (2015).
[22] Alihoosseini A., Hosseini S.H., Abbaszadeh A.R., Study of Compress Strength and Time Setting of Concrete by Additives of Silica Fume and Nano Silica, Asian Journal of Chemistry, 24(2): 903-907 (2012).