Photocatalytic Oxidation of Sulfides by TiO2@GO-CdSe Nanocomposite Modified with CdS

Document Type : Research Article


Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, Sanandaj , I.R. IRAN


In this study, aerobic photocatalytic oxidation of sulfides by TiO2@GO-CdSe and TiO2@GO-CdSeS nanocomposites under visible light irradiation were investigated. The nanocomposites were supported on the graphene oxide nano sheets via in situ syntheses of CdSe and TiO2 and then modified by CdSthrough a hydrothermal method. The nanocomposites were characterized by SEM imaging, XRD and EDAX analyses. The size of nanocomposites were distributed in a narrow range of 50-65 and 60-75 nm for TiO2@GO-CdSe and TiO2@GO-CdSeS, respectively. The yield of photocatalytic oxidation process was obtained 65% for TiO2@GO-CdSeS in optimized conditions. These nanocomposites show high activity under the mild condition and Visible light irradiation. The photocatalysts were recycled and reused 8 times without a significant decrease in activities.


Main Subjects

[1] Chen T-H., Yuan Z., Carver A., Zhang R., Visible Light-Promoted Selective Oxidation of Sulfides to Sulfoxides Catalyzed by Ruthenium Porphyrins with Iodobenzene Diacetate, Appl. Catal. A Gen., 478: 275–282 (2014).
[2] Kubacka A., Fernández-García M., Colón G., Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chem. Rev., 112: 1555-1614 (2011).
[3] Chen C., Ma W., Zhao J., Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation, Chem. Soc. Rev., 39: 4206-4219 (2010).
[4] Augugliaro V., Palmisano L., Green Oxidation of Alcohols to Carbonyl Compounds by Heterogeneous Photocatalysis, Chem. Sus. Chem., 3: 1135–1138 (2010).[5]    Abdullah A.M., Al-Thani N.J., Tawbi K., Al-Kandari H., Carbon/Nitrogen-Doped TiO2New Synthesis Route, Characterization and Application for Phenol Degradation, Arab J. Chem., 9: 229-237 (2016).
[6] Inturi S.N.R., Boningari T., Suidan M., Smirniotis P.G., Stabilization of Cr in Ti/Si/Cr Ternary Composites by Aerosol Flame Spray-Assisted Synthesis for Visible-Light-Driven Photocatalysis, Ind. Eng. Chem. Res., 55(46): 11839-11849 (2016).
[7] Barreca D., Carraro G., Warwick M.E.A., Kaunisto K., Gasparotto A., Gombac V., Sada C., Turner S., Tendeloo G.V., Maccato C., Fornasiero P., Fe2O3–TiO2 Nanosystems by a Hybrid PE-CVD/ALD Approach: Controllable Synthesis, Growth Mechanism, and Photocatalytic Properties, Cryst. Eng. Comm., 17: 6219-6226 (2015).
[8] Zhang Z., Wang W., Wang L., Sun S., Enhancement of Visible-Light Photocatalysis by Coupling with Narrow-Band-Gap Semiconductor: A Case Study on Bi2S3/Bi2WO6, ACS Appl. Mater. Interfaces., 4:5 93-597 (2012).
[9] Baia M., Melinte G., Barbu-Tudoran L., Diamandescu L., Iancu V., Cosoveanu V., Danciu V., Baia L., Highly Porous Nanocomposites Based on TiO2-Noble Metal Particles for Sensitive Detection of Water Pollutants by SERS, In: J. Phys. Conf. Ser. IOP Publishing, p 12059 (2011).
[10] Sharma V., Kumar S., Krishnan V., Shape Selective Au-TiO2 Nanocomposites for Photocatalytic Applications, Mater. Today Proc., 3: 1939-1948 (2016).
[11] Sun G., Zhu C., Zheng J., Jiang B., Yin H. Wang H., Qiu S., Yuan J., Wu M., Wu W., Xue Q., Preparation of Spherical and Dendritic CdS@TiO2 Hollow Double-Shelled Nanoparticles for Photocatalysis, Mater. Lett., 166: 113-115 (2016).
[13] Pouretedal H.R., Bastani S., Characterization and Photocatalytic Activity of  ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 11-19 (2015).
[14] Fernandes J.A., Khan S., Baum F., Kohlrausch E.C., Lucena Dos Santos J.A., Baptista D.L., Teixeira S.R., Dupont J., Santos M.J., Synergizing Nanocomposites of CdSe/TiO2 Nanotubes for Improved Photoelectrochemical Activity via Thermal Treatment, Dalton Trans., 45(24): 9925-31 (2016).
[15] Toyoda T., Yindeesuk W., Kamiyama K., Katayama K., Kobayashi H., Hayase S., Shen Q., The Electronic Structure and Photoinduced Electron Transfer Rate of CdSe Quantum Dots on Single Crystal Rutile TiO2: Dependence on the Crystal Orientation of the Substrate, J. Phys. Chem. C, 120: 2047-2057 (2016).
[16] Al‐Haddad A., Wang Z., Zhou M., Tarish S., Vellacheri R., Lei Y., Constructing Well‐Ordered CdTe/TiO2 Core/Shell Nanowire Arrays for Solar Energy Conversion, Small, 12: 5538-5542 (2016).
[18] Yoon H.J., Shanker A., Wang Y., Kozminsky M., Jin Q., Palanisamy N., Burness M.L., Azizi E., Simeone D.M., Wicha M.S., Kim J., Tunable Thermal‐Sensitive Polymer–Graphene Oxide Composite for Efficient Capture and Release of Viable Circulating Tumor Cells, Adv. Mater., 28: 4891-4897 (2016).
[20] Yang K., Feng L., Liu Z., Stimuli Responsive Drug Delivery Systems Based on Nano-Graphene for Cancer Therapy, Adv. Drug Deliv. Rev., 105(Pt B): 228-241 (2016).
[21] Darabdhara G., Boruah P.K., Borthakur P., Hussain N., R. Das RM., Ahamad T., Alshehri S.M., Malgras,V., Wu C.W.M., Yamauchi Y., Correction: Reduced Graphene Oxide Nanosheets Decorated with Au-Pd Bimetallic Alloy Nanoparticles Towards Efficient Photocatalytic Degradation of Phenolic Compounds in Water, Nanoscale, 8: 19174-75 (2016).
[22] Janitabar Darzi S., Movahedi M., Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation, Iran. J. Chem. Chem. Eng. (IJCCE), 3(2): 55-64 (2014).
[23] Wittenberg R., Pradera M.A., Navio J.A., Cumene Photo-Oxidation over Powder TiO2 Catalyst, Langmuir13: 2373–2379 (1997).
[26] Trapalis A., Todorova N., Giannakopoulou T., Boukos N., Speliotis T., Dimotikali D., Yu J., TiO2/Graphene Composite Photocatalysts for NOx Removal: A Comparison of Surfactant-Stabilized Graphene and Reduced Graphene Oxide, Appl. Catal. B Environ., 180: 637-647 (2016).
[27] Hummers Jr W.S., Offeman R.E., Preparation of Graphitic Oxide, J. Am. Chem Soc., 80: 1339 (1958).
[29] Jingshan L., Lin Ma., Tingchao H., Chin F.N., Shijie W., Handong S., Hong J.F., TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties, J. Phys. Chem. C, 116: 11956-11963 (2012).
[30] Liuan G., Jingyu W., Hao C., Yizhi Z., Lifei L., Xijiang H., One-Step Preparation of Graphene-Supported Anatase TiO2 with Exposed {001} Facets and Mechanism of Enhanced Photocatalytic Properties, ACS Appl. Mater. Interfaces, 5: 3085-3093 (2013).