Investigation of Structural, Electrical and Optical Properties of BaZrO3 with Density Functional Theory

Document Type : Research Article


Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, I.R. IRAN


In this research, we investigated the structural, electronic and optical properties of BaZrO3 ceramics and the effects of pressure on these properties were studied. The calculations have been performed by Full Potential Linearized Augmented Plane Wave (FP-LAPW) method in the framework of density functional theory and we used WIEN2k and Quantum Espresso packages. The exchange and correlation potential terms are calculated by LDA, PBE, PB Esol, GGA-WC, GGA+U, modified Becke–Johnson (mBJ) and GG Am BJ+U approximations. The calculated band gap for BaZrO3with the best approximation GG Am BJ+U shows that there is an indirect band gap at the Γ-L direction that it is equal to 5.30eV, so BaZrO3 is an insulator. The results of the band structure and the dielectric function show that the next probable transitions appear at W-L, Γ- Γ and K-K directions and by calculation of density of states we find that p orbital of O atom possesses the majority of contributions in the valence band and at the top of the conduction band, 3d orbitals of Ba and Zr atoms have the dominant contribution. This compound has low compressibility and high hardness. The maximum of absorption, the minimum of reflection and the Plasmon peak occur when the energy of photons is 20.53 eV.


Main Subjects

[1] Ashcroft N.W., Mermin N.D., "Solid State Physics: Advances in Research and Applications", Holt, Rinehart and Winston, New York, 45 (1976).
[2] Lebedev AI., Sluchinskaya IA., Structural Instability in BaZrO3 Crystals: Calculations and Experiment, Physics of the Solid State,55(9): 1941-1945 (2013).
[3] Borja-Urby R., Diaz-Torres L. A., Salas P., Vega-Gonzalez M., Angeles-Chavez C., Blue and Red Emission in Wide Band Gap BaZrO3:Yb3+,Tm3+,Materials Science and Engineering B, 174(1-3): 169-173 (2010).
[4] Björketun M., Sundell P., Wahnström G., Effect of Acceptor Dopants on the Proton Mobility in BaZrO3: A Density Functional Investigation, Physical Review B,76(5): 054307 (2007).
[5] Islam M. S., Slater P. R., Tolchard J. R., Dinges T., Doping and Defect Association in AZrO3 (A= Ca, Ba) and LaMO3 (M = Sc, Ga) Perovskite-Type Ionic Conductors, Dalton transactions, (19): 3061-3066 (2004).
[6] Kuwabara A., Toyoura K., Koyama Y., Fisher C.AJ., Oba F., Matsunaga K., Moriwake H., Tanaka I., First Principles Calculations of Point Defects in Acceptor-Doped BaZrO3.Solid State Ionics, 176( 11–12): 1091–1096 (2005).
[7] Jacob K.T., Waseda Y., Potentiometric Determination of the Gibbs Energies of Formation of SrZrO and BaZrO, Metallurgical and Materials Transactions B,26(4): 775-781 (1995).
[8] Bennett W. J., Grinberg I., Rappe A.M., Effect of Symmetry Lowering on the Dielectric Response of BaZrO3, Physical Review B,73(18): 180102 (2006).
[9] Sundell P.G., Björketun M.E., Wahnström G., Thermodynamics of Doping and Vacancy Formation in BaZrO3 Perovskite Oxide from Density Functional Calculations, Physical Review B,73(10): 104112 (2006).
[10] Ho J., Heifets E., Merinov B., Ab Initio Simulation of the BaZrO3(001) Surface Structure, Surface Science,601(2): 490-497 (2007).
[11] Parida S., Rout S. K., Cavalcante L. S., Sinha E., Li M.S., Subramanian V., Gupta N., Gupta V.R., Varela J.A., Longo E., Structural Refinement, Optical and Microwave Dielectric Properties of BaZrO3, Ceramics International, 38(3): 2129-2138 (2012).
[12] Ghosez Ph., Michenaud J-P, Gonze X., Dynamical Atomic Charges: The Case of ABO3 Compounds, Physical Review B, 58(10): 6224 (1998).
[13] Terki R., Feraoun H., Bertrand G., Aourag H., Full Potential Calculation of Structural, Elastic and Electronic Properties of BaZrO3 and SrZrO3, Physica Status Solidi b, 242(5): 1054-1062 (2005).
[14] LevinI., Amos T.G., Bell S.M. , Farber L., Vanderah T.A., Roth R.S., Toby B.H., Phase Equilibria, Crystal Structures and Dielectric Anomaly in the BaZrO3–CaZrO3 System, Journal of Solid State Chemistry,175(2): 170-181 (2003).
[15] Robertson J., Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices, Journal of Vacuum Science & Technology B,18(3): 1785-1791 (2000).
[16] Perdew J.P. , Wang Y., Pair-Distribution Function and Its Coupling-Constant Average for the Spin-Polarized Electron Gas, Physical Review B, 46(20): 12947 (1992).
[17] Cottenier S., "Density Functional Theory and the Family of (L) APW-Methods: a Step-by-Step Introduction", Instituut voor Kern-en Stralingsfysica, KU Leuven, Belgium (2002).
[18] Blaha P., Schwarz K., Madsen G.K.H, Kvasnicka D., Luitz J., "Wien2k: An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties", Vienna University of Technology, Austria (2001).
[19] Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Guido, Chiarotti L., Cococcioni M., Dabo I.,QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, Journal of Physics: Condensed Matter, 21(39): 395502 (2009).
[20] Hohenberg P., Kohn W., Inhomogeneous Electron Gas, Physical Review, 136(3B): B864 (1964).
[21] Kohn W., Sham L.J., Self-consistent Equations Including Exchange and Correlation Effects, APS, 140(4A): A1133 (1965).
[23] Perdew J.P., Burke K., Wang Y., Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System, Physical Review B,54(23): 533-534 (1996).
[24] Anisimov V.I., Aryasetiawan F., Lichtenstein A.I., First-principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: the LDA+ U Method, Journal of Physics: Condensed Matter, 9(4): 767 (1999).
[25] Koller D., Tran F., Blaha P., Merits and Limits of the Modified Becke-Johnson Exchange Potential, Physical Review B,83(19): 195134 (2011).
[26] Yamanaka S., Fujikane M., Hamaguchi T., Muta H., Oyama T., Matsuda T., Kobayashi S.I., Kurosaki K., Thermophysical Properties of BaZrO3 and BaCeO3, Journal of Alloys and Compounds, 359(1): 109-113 (2003).
[27] Murnaghan F.D ., "The Compressibility of Media under Extreme Pressures", Proceedings of the National Academy of Sciences of the United States of America (1944).
[28] King-Smith R.D. , Vanderbilt D., First-Principles Investigation of Ferroelectricity in Perovskite Compounds, Physical Review B,49(9): 5828 (1994).
[29] کیتل ,چ،  آشنایی بافیزیک حالت جامدمترجم: ا، پورقاضی مرکز نشر دانشگاهی، چاپ ششم (1385)
[30] Dresselhaus M., "Optical Properties of Solids", Proceedings of the International School of Physics, Academic Press. New York (1966).
[31] Koch S.W. , "Quantum theory of the Optical and Electronic Properties of Semiconductors". New Jersey, U.S.A.: WorldScientific Pub Co Inc(1994).
[32] Fox A.M.  and Fox M., "Optical Properties of Solids", Oxford University Press New York, (2001).
[33] Ravindran P., Delin A., Ahuja R., Johansson B., Auluck S., Wills J.M., Eriksson O., Optical Properties of Monoclinic SnI2 from Relativistic First-principles Theory, Physical Review B,56(11): 6851 (1997).
[34] ParidaS., RoutS.K., CavalcanteL.S., SinhaE., Siu LiM., SubramanianV.,GuptaN., GuptaV.R., VarelaJ.A., LongoE., Structural Refinement, Optical and Microwave Dielectric Properties of BaZrO3, Ceramics International, 38: 2129–2138 (2012).
[35] KhenataR., SahnounM., BaltacheH., RératM.,Rashek A.H., IllesN., BouhafsB.,First-principle Calculations of Structural, Electronic and Optical Properties of BaTiO3 and BaZrO3 under Hydrostatic Pressure, Solid State Communications, 136(2): 120-125 (2005)