The Importance and Application of Nano Metal-Organic Frameworks to Absorb, Store and Release of Methane

Document Type : Review Article

Authors

1 Faculty of Chemistry, Razi University, Kermanshah 67149, I.R. IRAN

2 Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, I.R. IRAN

3 Mazandaran Gas Company, Mazandaran, Sari, I.R. IRAN

Abstract

Natural gas, whose main component is methane, is an attractive fuel for vehicular applications. Metal-Organic Frameworks (MOFs) have received significant attention as a new class of adsorbents for natural gas storage. MOFs are typically constructed by connecting Secondary Building Units (SBUs) consist of metal ions with organic connectors to produce various networks. They are completely regular, have high porosity, and highly designable frameworks. These properties make MOFs suitable for various applications especially in trap and adsorption affinities for various compounds. Evaluation of these materials has focused on adsorption of pure methane, although commercial natural gas also contains small amounts of higher hydrocarbons such as ethane and propane, which adsorb more strongly than methane. In this view, we provide an overview of the current status of metal–organic frameworks for methane storage.

Keywords

Main Subjects


[1] Kitagawa S., Kitaura R., Noro S., Functional Porous Coordination Polymers, Angew. Chem. Int. Ed., 43: 2334–2375 (2004).
[5] Rostamnia S., Alamgholiloo H., Jafari M., Rookhosh R., Abbasi A.R., Pd-Grafted Open Metal Site Copper-Benzene-1, 4-Dicarboxylate Metal–Organic Frameworks (Cu-BDC MOF’s) as Promising Interfacial Catalysts for Sustainable Suzuki Coupling, Appl. Organometal. Chem., 30: 954-958 (2016).
[9] Abbasi A.R., Yousefshahi M., Azadbakht A., Morsali A., Masoomi M.Y., Methyl Orange Removal from Wastewater Using [Zn2(oba)2(4-bpdh)].3DMF Metal–Organic Frameworks Nanostructures, J. Inorg. Organomet. Polym., 25: 1582–1589 (2015).
[10] مرسلی، علی؛ "نانو شیمی ابرمولکول­ها"، انتشارات دانشگاه تربیت مدرس، (1389).
[11] Barbour L.J., Crystal Porosity and the Burden of Proof, Chem. Commun., 1163–1168 (2006).
[12] Takamizawa S., “Making Crystals by Design: Nanoporosity, Gas Storage, Gas Sensing”, Wiley-VCH, Weinheim, (2007).
[13] Brunauer S., Deming S.L., Deming W.E., Teller E., On a Theory of the van der Waals Adsorption of Gases, J. Am. Chem. Soc., 62: 1723-1732 (1940).
[14] Gregg, S., Sing, K. “Adsorption, Surface Area and Porosity”, London: Academic Press, (1984).
[15] Plévert J., Gentz T., Laine A., Li H., Young V., Yaghi O.M., A Flexible Germanate Structure Containing 24-Ring Channels and with Very Low Framework Density, J. Am. Chem. Soc., 123: 12706–12707 (2001).
[16] Kaneko K., Ishii C., Superhigh Surface Area Determination of Microporous Solids, Colloids. Surf., 67: 203–212 (1992).
[17] Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science., 309: 2040–2042 (2005).
[18] Batten S.R., Neville S.M., Turner D.R., “Coordination Polymers, Design, Analysis and Application”, The Royal Society of Chemistry, Chapter 10, (2009).
[19] Ockwig N.W., Delgado-Friedrichs O., O’Keeffe M., Yaghi O.M., Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks, Acc. Chem. Res., 38: 176–182 (2005).
[20] Suh M.P., Cheon Y.E., Lee E.Y., Syntheses and Functions of Porous Metallosupramolecular Networks, Coord. Chem. Rev., 252: 1007–1026 (2008).
[21] Rowsell J.L.C., Yaghi O.M., Metal–Organic Frameworks: A New Class of Porous Materials, Micropor. Mesopor. Mater., 73:3–14 (2004).
[22] Zhou W., Wu H., Hartman M.R., Yildirim T., Hydrogen and Methane Adsorption in Metal−Organic Frameworks:  A High-Pressure Volumetric Study, J. Phys.Chem. C, 111: 1613–16137  (2007).
[23] Senkovska I., Kaskel S., High Pressure Methane Adsorption in the Metal-Organic Frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3,Micropor. Mesopor. Mater., 112: 108–115  (2008).
[25] Peng Y., Krungleviciute V., Eryazici I., Hupp J.T., Farha O.K., Yildirim T., Methane Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges, J. Am. Chem. Soc., 135: 11887-11894 (2013).
[26] Lozano-Castello D., Alcaniz-Monge J., Casa-Lillo M.A., Cazorla-Amoros D., Linares-Solano A., Advances in the Study of Methane Storage in Porous Carbonaceous Materials, Fuel, 81: 1777–1803 (2002).
[27] Menon V.C., Komarneni S.J., Porous Adsorbents for Vehicular Natural Gas Storage: A Review, Porous Mater., 5: 43–58 (1998).
[28] He Y., Zhou W., Qian G., Chen B., Methane Storage in Metal–Organic Frameworks, Chem. Soc. Rev., 43: 5657–5678 (2014).
[29] Mason J.A., Veenstra M., Long J.P., Evaluating Metal–Organic Frameworks for Natural Gas Storage, Chem. Sci., 5: 32–51 (2014).
[30] Makal T.A., Li J.R., Lu W., Zhou H.C., Methane Storage in Advanced Porous Materials, Chem. Soc. Rev., 41: 7761–7779 (2012).
[31] Liss W.E., Thrasher W.H., Steinmetz G.F., Chowdiah P., Attari A., “Variability of Natural Gas Composition in Select Major Metropolitan Areas of the United States”, PB92–224617 (GRI), (1992).
[32] He Y., Krishna R., Chen B., Metal–Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation of Light Hydrocarbons, Energy Environ. Sci., 5: 9107–9120 (2012).
[33] Zhang H., Deria P., Farha O.K., Hupp J.T., Snurr R.Q., A Thermodynamic Tank Model for Studying the Effect of Higher Hydrocarbons on Natural Gas Storage in Metal-Organic Frameworks, Energy Environ. Sci., 8: 1501–1510 (2015).
[34] Celzard A., Fierro V., Preparing a Suitable Material Designed for Methane Storage: Acomprehensive Report, Energy Fuels, 19: 573–583 (2005).