Prediction Surface Coordination Number of Molten Metals

Document Type : Research Article

Authors

Faculty of Science, Ilam University, P.O. Box 69315516 Ilam, I.R. IRAN

Abstract

In this study, the surface tension and surface coordination number of the molten metal using the Stephen equation calculated and reported. Parameters such as enthalpy of vaporization, density and surface tension of the parameters are required. Assumptions to predict the surface tension of molten metals such as minor changes in the volume of melting point similar to the melting point of the crystalline structure of liquid and solid, considering the increasing entropy, and no matter particles interact with particles in the second and third layers the surface is used. Results have shown that the surface coordination number of molten metal is in the range of 0.3 -0.7 of bulk coordination number. As well as being dependent surface coordination number on different parameters, such as temperature and lack of uniformity in terms of the calculation of various metals has made it difficult to compare the surface coordination number numbers. Also, different equations have been used to correlate the coordination number and adjustable parameters reported.

Keywords

Main Subjects


[1] Mehdipour N., Boushehri A., Equation of State for Molten Alkali Metals from Surface Tension. Part IIJournal of Thermophysic19: 331–340 (1998).
[2] نیک سرشت ، صابر؛ ریاضی مسعود؛ فرشچی تبریزی، فرشاد؛ معادله کشش بین سطحی فاز آلی ـ آب در حضور ماده فعال در سطح سدیم دودسیل سولفات (SDS) ، نشریه شیمی و مهندسی شیمی ایران، (2)37183 تا 193 (1397).
[3] Neumann A.W., David R., Zuo Y., “Applied Surface Thermodynamics”, CRC Press: Florida (2011).
[4] Fan J., Zhao X., Guo Z., Surface Tension of Ethyl Fluoride (HFC161) from (233 to 373) KFluid Phase Equilibria, 316: 98-101 (2012).
[5] Mozaffari F., Modeling the Volumetric Properties of Metals from Heat of VaporizationJournal of Molecular Liquids, 212: 461–466(2015).
[6] Berry JD., Neeson MJ., Dagastine RR., Chan DYC., Tabor RF, Measurement of Surface and Interfacial Tension Using Pendant Drop TensiometryJournal of Colloid and Interface Science, 454: 226-237(2015).
[7] جابرزاده، سعید؛ حقیقی اصل، علی؛ صفدری، سید جابر؛رشیدی، عباس، بررسی تأثیر افزودن الکل و فعال کننده های سطحی بر روی هیدرودینامیک راکتور هوابالابر در شرایط سه فازی، نشریه شیمی و مهندسی شیمی ایران، (4)33: 69 تا 77 (1393).
[8] Mulero A., Cachadina I., Recommended Correlations for the Surface Tension of Several Fluids Included in the REFPROP ProgramJournal of Physical and Chemical Reference Data, 43: 023104 (2014).
[9] Aqra F., Ayyad A., Surface Energies of Metals in Both Liquid and Solid StatesApplied Surface Science257: 6372–6379 (2011).
[10] Kumar Mishra R., Lalneihpuii R., Raghvendu Pathak A., Investigation of Structure, Thermodynamic and Surface Properties of Liquid Metals Using Square Well PotentialChemical Physics457:13–18 (2015).
[11] Sdobnyakov Nickolay Y., Samsonov Vladimir M., On the Size Dependence of Surface Tension in the Temperature Range from Melting Point to Critical PointCentral European Journal of Physics2: 247–257(2005).
[12] Bourasseau E., Homman A. A., Durand O., Ghoufi A., Malfreyt P., Calculation of the Surface Tension of Liquid Copper from Atomistic Monte Carlo Simulations,The European Physical Journal B86: 251-266 (2013).
[14] میرزایی، بهروز؛ ارایه قانون اختلاط جدید برای پیش‌بینی کشش­سطحی مخلوط­ها، نشریه شیمی و مهندسی شیمی ایران، (2)33: 47 تا 53 (1393).
[16] Gharagheizi F., Eslamimanesh A., Sattari M., Mohammadi A H., Richon D., Development of Corresponding States Model for Estimation of the Surface Tension of Chemical CompoundsAIChE Journal59: 613-621 (2013).
[17] Mirjalili M., Vahdati-Khaki J., Prediction of Nanoparticles’ Size-Dependent Melting Temperature Using Mean Coordination Number ConceptJournal of Physics and Chemistry of Solids, 69: 2116– 2123 (2008).
[18] Carvalho P. J., Freire M. J., Marrucho I. M., Queimada A., Coutinho J. A. P., Surface Tensions of Imidazolium Based Ionic Liquids: Anion, Cation, Temperature and Water EffectJournal of Chemical Engineering53: 1346-1350 (2008).
[19] Strechan A. A., Kabo G. J., Paulechka Y. U., The Correlations of the Enthalpy of Vaporization and the Surface Tension of Molecular LiquidsFluid Phase Equilibria, 250:125–130(2006).
[20] Lu H. M., Jiang Q., Surface Tension and Its Temperature Coefficient for Liquid MetalsJournal of Physical Chemistry, 109:15463-15468(2005).
[21] Gotoh K., Surface Tension of Liquids from the Coordination Number in Random AssemblageIndustrial and Engineering Chemistry Fundamental13:287-289(1974).
[22] Linh N.N., Hoang V.V., Surface Structure and Structural Point Defects of Liquid and Amorphous Alumino Silicate NanoparticlesJournal of Physics Condensed Matter,20: 265-275 (2008).
[23] Flowers B. H., Mendoza E., "Properties of Matter", Vol. 34, John Wiley & Sons, Inc., London, (1970).