Sensitive Determination of Aflatoxin B1 Using Fluorescence of ZnO Quantum Dots-Molecularly Imprinted Polymer Composite

Document Type : Research Article


Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran


Molecularly Imprinting Polymer (MIP)-coated A ZnO Quantum Dots (QDs) composite was introduced for selective determination of Aflatoxin B1 (AFB) as a template. The MIP layer was obtained by a simple method containing the self-assembly process of 3-aminopropyl triethoxysilane (APTES) monomers and tetraethyl ortho-silicate as a cross-linking agent. In order to create suitable sites in the polymeric matrix, AFB was applied as a proper template molecule. The inherent advantage of the MIP procedure is the great tendency of the prepared QDs toward the AFB molecules. The MIP-coated ZnO QDs displayed a potent fluorescence emission which could be quenched in the presence of AFB. This effect was exploited as the basis of a selective probe for the detection of AFB some water samples. In optimal conditions, a linear relationship between the emission intensity of prepared composite and concentration of AFB was obtained in the range of 0.008-1 mg/L with a detection limit of 0.003 mg/L. Linking the high selectivity of the MIP component with individual fluorescence features of ZnO QDs offers a sensitive and selective method for recognizing various toxic detection. The established method was satisfactorily applied for the determination of AFB contamination in environmental water samples.


Main Subjects

[1] López G., José S., Frenich A. G., Vidal J.L.M., Romero‐González R., Determination of Aflatoxins B1, B2, G1, G2 and Ochratoxin A in Animal feed by Ultra-High‐Performance Liquid Chromatography–Tandem mass SpectrometryJ. Sep. Sci., 33(4‐5): 502-508 (2010).
[2] Halil T., Arslan R., Determination of Aflatoxin B1 Levels in Organic Spices and HerbsSci. World J., 2013: 874093 (2013).
[3] Ghali, R., Belouaer, I., Hdiri, S., Ghorbel, H., Maaroufi, K., Hedilli A., Simultaneous HPLC Determination of Aflatoxins B1, B2, G1 and G2 in Tunisian Sorghum and PistachiosJ. Food Comp. Anal., 22(7): 751-755 (2009).
[4] Arranz I., Stroka J., Neugebauer M.I.C.H.A.E.L., Determination of Aflatoxin B1 in Tiger Nut-Based Soft DrinksFood Add. Contamin.23: 305-308 (2006).
[5] Bavili Tabrizi A., Panahi M., Solid Phase Extraction Using Modified Magnetic Iron Oxide Nanoparticles for Extraction and Spectrofluorimetric Determination of Carvedilol in Human Plasma SamplesIranian Journal of Chemistry and Chemical Engineering (IJCCE)36(3): 115-125 (2017).
[6] مهرنوش شه دوست خانی؛ ژیلا آزاد؛ کاظم کارگش، مطالعه رفتار کمپلکس های آهن (III) و کبالت (II) استیل استونیت در حلال های آلی با استفاده از روش های فلوئورسانس و اسپکترومتری فرابنفش ـ مرئی، نشریه شیمی و مهندسی شیمی ایران، (3)36: 83 تا 91 (1396).
[7] Cui L., He X.P., Chen G.R., Recent Progress in Quantum Dot Based SensorsRsc Adv., 5: 26644-26663 (2015).
[8] Ren X., Chen L., Preparation of Molecularly Imprinted Polymer Coated Quantum Dots to Detect Nicosulfuron in Water SamplesAnal. Bioanal. Chem., 407: 8087-8095 (2015).
[9] Xu S.F., Lu H.Z., Li J.H., Song X.L., Wang A.X., Chen L.X., Han S.B., Dummy Molecularly Imprinted Polymers-Capped CdTe Quantum Dots for the Fluorescent Sensing of 2,4,6-TrinitrotolueneAppl. Mater. Interfaces, 5: 8146–8154 (2013).
[10] Zhang Z., Li J.H., Wang X.Y., Shen D.Z., Chen L.X., Quantum Dots Based Mesoporous Structured Imprinting Microspheres for the Sensitive Fluorescent Detection of PhycocyaninAppl. Mater. Interfaces, 7: 9118–9127 (2015).
[11] Hagura N., Ogi T., Shirahama T., Iskandar F., Okuyama K., Highly Luminescent Silica-Coated ZnO Nanoparticles Dispersed in an Aqueous MediumJ. Lumin., 131: 921-925 (2011).
[12] Fonoberov V.A., Alim K.A., Balandin A.A., Xiu F., Liu J., Photoluminescence Investigation of the Carrier Recombination Processes in ZnO Quantum Dots and NanocrystalsPhy. Rev. B, 73: 165317 (2006).
[13] Segets D., Gradl J., Taylor R. K., Vassilev V., Peukert W., Analysis of Optical Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility, and Surface EnergyACS Nano3: 1703-1710 (2009).
[14] Asok A., Gandhi M. N., Kulkarni A. R., Enhanced Visible Photoluminescence in ZnO Quantum Dots by Promotion of Oxygen Vacancy FormationNanoscale4: 4943-4946 (2012).
[15] Xu X., Xu C., Shi Z., Yang C., Yu B., Hu J., Identification of Visible Emission from ZnO Quantum Dots: Excitation-Dependence and Size-DependenceJ. Appl. Phy., 111: 083521 (2012).
[16] Zhao D., Song H., Hao L., Liu X., Zhang L., Lv Y., Luminescent ZnO Quantum Dots for Sensitive and Selective Detection of DopamineTalanta107: 133-139 (2013).
[18] Patra M. K., Manoth M., Singh V. K., Gowd G. S., Choudhry V. S., Vadera S. R., Kumar N., Synthesis of Stable Dispersion of ZnO Quantum Dots in Aqueous Medium Showing Visible Emission from Bluish Green to YellowJ. Lumin., 129: 320-324 (2009).
[20] Singh K., Mehta S. K., Luminescent ZnO Quantum Dots as an Efficient Sensor for Free Chlorine Detection in WaterAnalyst141: 2487-2492 (2016).
[21] Chen L. X., Xu S.F., Li J.H., Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted ApplicationsChem. Soc. Rev., 40: 2922–2942 (2011).
[23] Bedwell T.S., Whitcombe M.J., Analytical Applications of MIPs in Diagnostic Assays: Future PerspectivesAnal. Bioanal. Chem., 408: 1735-1751 (2016).
[24] Tang J., Xiang L., Development of a Probe Based on Quantum Dots Embedded with Molecularly Imprinted Polymers to Detect ParathionPol. J. Environ. Stud., 25: 787-793 (2016).
[25] Abbasifar J., Samadi-Maybodi A., Selective Determination of Atropine Using poly Dopamine-Coated Molecularly Imprinted Mn-Doped ZnS Quantum DotsJ. Fluoresc., 26: 1645-1652 (2016).
[26] Huy B.T., Seo M.H., Zhang X., Lee Y.I., Selective Optosensing of Clenbuterol and Melamine Using Molecularly Imprinted Polymer-Capped CdTe Quantum DotsBiosens. Bioelectron., 57: 310-316 (2014).
[27] Chantada-Vázquez M.P., Sánchez-González J., Peña-Vázquez E., Tabernero M. J., Bermejo A.M., Bermejo-Barrera P., Moreda-Piñeiro A., Synthesis and Characterization of Novel Molecularly Imprinted Polymer–Coated Mn-Doped ZnS Quantum Dots for Specific Fluorescent Recognition of CocaineBiosens. Bioelectron., 75: 213-221 (2016).
[28] Amjadi M., Jalili R., Manzoori J. L., A Sensitive Fluorescent Nanosensor for Chloramphenicol Based on Molecularly Imprinted Polymer‐Capped CdTe Quantum DotsLuminescence31: 633–639 (2015).
[29] Ge S., Lu J., Ge L., Yan M., Yu J., Development of a Novel Deltamethrin Sensor Based on Molecularly Imprinted Silica Nanospheres Embedded CdTe Quantum DotsSpectrochim. Acta A79: 1704-1709 (2011).
[31] Wei F., Wu Y., Xu G., Gao Y., Yang J., Liu L., Zhou P., Hu Q., Molecularly Imprinted Polymer Based on CdTe@ SiO2 Quantum Dots as a Fluorescent Sensor for the Recognition of NorepinephrineAnalyst139: 5785-5792 (2014).
[33] Zhang W., He X. W., Chen Y., Li W. Y., Zhang Y. K., Composite of CdTe Quantum Dots and Molecularly Imprinted Polymer as a Sensing Material for Cytochrome cBiosens. Bioelectron., 26: 2553-2558 (2011).
[35] Singh K., Chaudhary G.R., Singh S., Mehta S.K., Synthesis of Highly Luminescent Water Stable ZnO Quantum Dots as Photoluminescent Sensor for Picric AcidJ. Lumin., 154: 148-154 (2014).
[37] Lecoq, E., Duday, D., Bulou, S., Frache, G., Hilt, F., Maurau, R., Choquet, P., Plasma Polymerization of APTES to Elaborate Nitrogen Containing Organosilicon Thin Films: Influence of Process Parameters and Discussion about the Growing MechanismsPlasma Process. Polym.10: 250-261 (2013).
[38] Amiri, A., Ramazani, A., Jahanshahi, M., Moghadamnia, A., Synthesis and Evaluating of Nanoporous Molecularly Imprinted Polymers for Extraction of Quercetin as a Bioactive Component of Medicinal PlantsIranian Journal of Chemistry and Chemical Engineering (IJCCE)35: 11-19 (2016).