Theoretical Study of Axial Strain Effects on Aromaticity Factor in Single-Walled Zigzag Boron Nitride Nanotubes

Document Type : Research Article


Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, P.O. Box 77176, Rafsanjan, I.R. IRAN


In this study, the effects of the aromaticity on electronic properties of single-walled Boron Nitride Nanotubes (BNNTs) have been studied along with tension. The geometries were optimized at the B3LYP/6-31+G(d) level. In the axial tensile process, the B and the N atoms within two atomic layers at both ends of BNNTs were kept fixed, whereas the remaining layers were relaxed during the calculations. The values of the bandgap, binding energies, electronic chemical potential, chemical hardness, and electrophilicity index have been calculated. The Nucleus-Independent Chemical Shielding (NICS), Harmonic Oscillator Model of Aromaticity (HOMA), Harmonic Oscillator Model of Electron Delocalization (HOMED) and Para-Delocalization Index (PDI) have been calculated to quantify aromaticity in terms magnetic, structural and topological criteria. Our results indicate that the HOMED index is appropriate for determining the aromaticity of single-walled zig-zag BN nanotubes. Also, the aromaticity of these nanotubes decreases with the increase of axial strain. A reverse correlation is observed between aromaticity and conductivity of nanotubes along tension.


Main Subjects

[1] Schleyer P.V.R., Introduction:  AromaticityChem. Rev101(5): 1115-1118 (2001).
[2] Schleyer P.V.R., Jiao H., What is Aromaticity?Pure Appl. Chem68(2): 209-218 (1996).
[3] Katritzky A.R., Barczyn´ski B., Musumurra G., Pisano D., Szafran M., Aromaticity as a Quantitative Concept. 1. A Statistical Demonstration of the Orthogonality of Classical and Magnetic Aromaticity in Five- and Six-Membered HeterocyclesJ. Am. Chem. Soc.111(1): 7–15 (1989).
[4] Krygowski T.M., Ciesielski A., Bird C.W., Kotschy A., Aromatic Character of the Benzene Ring Present in Various Topological Environments in Benzenoid Hydrocarbons. Nonequivalence of Indices of AromaticityJ. Chem. Inf. Comput. Sci.35(2): 203-210 (1995).  
[5] Jug K., Koester A., Aromaticity as a Multi-Dimensional PhenomenonJ. Phys. Org. Chem., 4(3): 163–169 (1991).
[6] Katritzky A.R., Karelson M., Sild S., Krygowski T.M., Jug K., Aromaticity as a Quantitative Concept. 7. Aromaticity Reaffirmed as a Multidimensional CharacteristicJ. Org. Chem.63(15): 5228–5231 (1998).
[8] Jug K., Koster A.M., Aromaticity as a Multi Dimensional PhenomenonJ. Phys. Org. Chem4(3): 163-169 (1991).
[9] Orozco M., Luque F.J., Theoretical Methods for the Description for the Solvent Effect in Biomolecular SystemsChem. Rev100(11): 4187-4226 (2000).
[10] Kruszewski J., krygowski T.M., Harmonic Oscillator Approach to the Definition of AromaticityBull. Pol. Acad. Sci. Chem20: 907-915 (1972).
[12] Raczyñska E.D., Hallman M., Kolczyñska K., Stêpniewski T.M., On the Harmonic Oscillator Model of Electron Delocalization (HOMED) Index and Its Application to Heteroatomic π-Electron SystemsSymmetry2(3):1485-1509 (2010).
[13] Bühl M., Wüllen C.V., Computational Evidence for a New C84 IsomerChem. Phys. Lett., 247(1-2): 63-68 (1995),
[14] Bader R.F.W., Laidig K.E., Streitwieser A., Speers P., Electron Delocalization and the Fermi HoleJ. Am. Chem. Soc., 118(21): 4959-4965 (1996).
[15] Poater J., Fradera X., Duran M., Sola M., The Delocalization Index as an Electronic Aromaticity Criterion: Application to a Series of Planar Polycyclic Aromatic HydrocarbonsChem. Eur. J., 9(2): 400–406 (2003).
[16 ]ارشدی، ستار؛ دیده بان، خدیجه؛ رستمی پایین افراکتی، معصومه، نانومخروط بور نیتریدی BNNC جایگزین شده با جایگاه فعال شبه کلروفیل: حسگری گزینش پذیر برای گاز اکسیژن، نشریه شیمی و مهندسی شیمی ایران، (1)36: 157 تا 143 (1396).
[17] وصالی، اسماعیل ؛ امیرزاده؛ زهرا ، دیده بان، خدیجه، مطالعه برهمکنش منوترپن‌های خطی با نانو ذره بورنیترید (B12N12) ، نشریه شیمی و مهندسی شیمی ایران، (4)35: 11 تا 19 (1395).
[18] Ghasemi A.S., Binaeian E., Tayebi H., Modanlou-Jouybari Y., CO2 Adsorption on the Surface and open Ended of Single Wall Carbon Nanotubes (SWCNTs): A Comparative Study , Int. J. Nano Dimens., 7(3): 247-253 (2016).
[20] Najafpour J., Modulating Band Gap and HOCO/LUCO Energy of Boron-Nitride Nanotubes under a Uniform External Electric FieldIran. J. Chem. Chem. Eng. (IJCCE), 36(6): 93-106 (2017).
[22] Lukovits I., Kármán F.H., Nagy P.M., Kálmán E., Aromaticity of Carbon NanotubesCroat. Chem. Acta, 80(2): 233–237 (2007).
[23] بلبل امیری، محدثه؛ ارشدی، ستار؛ عزیزی، زهرا ، بررسی برهم کنش گاز خردل بر روی نانولوله­های آلومینیوم نیترید زیگزاگ (4،0)، (5،0) و (6،0)، نشریه شیمی و مهندسی شیمی ایران، (4)33: 31 تا 41 (1393).
[24] Boshra A., Dehshiri M.M., Seif A., Jafari R., Effect of Nanotube Length on the Aromaticity and CSI Parameters of Finite Length Single-Wall Zigzag and Armchair Boron Nitride Nanotubes, J Mol Struc-Theochem906(1-3): 63–67 )2009(.
[25] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B.,Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09, Revision A.02 (GAUSSIAN, Inc,Wallingford CT)) (2009).
[26] Bader R.F.W., “Atoms in Molecules: a Quantum Theory”, Oxford University Press, Oxford  (1990).
[27] Biegler König F.W., Schönbohm D., Update of the AIM2000-Program for Atoms in Molecules, J. Comput. Chem23(15):1489-1494) 2002(.
[28] London F., Quantum Theory of Interatomic Currents in Aromatic CompoundsJ Phys Rad8(10): 397-409 )1937(.‏
[29] Madura I.D., Krygowski T.M., C'yrahski M.K., Structural Aspects of the Aromaticity of Cyclic п-Electron Systems with BN BondsTetrahedron54(49): 14913-14918 (1998).
[30] Foroutan-Nejad C., Inter-Atomic Magnetizability: A QTAIM-Based Approach Toward Deciphering Magnetic AromaticityJ. Phys. Chem. A115(45): 12555-12560 (2011).
[31] Badri Z., Pathak S., Fliegl H., Rashidi-Ranjbar P., Bast R., Marek R., Foroutan-Nejad C., Ruud K., All-Metal Aromaticity: Revisiting the Ring Current Model Among Transition Metal ClustersJ. Chem. Theory Comput., 9(11): 4789-4796 (2013).
[32] Foroutan-Nejad C., Is NICS a Reliable Aromaticity Index for Transition Metal Clusters? Theor. Chem. Acc., 134(8): 1-9 (2015).
[34] Zhao L., Grande-Aztatzi R., Foroutan-Nejad C., Ugalde J.M., Frenking G., Aromaticity, the Huckel 4n + 2 Rule and Magnetic CurrentChemistry Select2(3): 863-870 (2017).
[36] Parr R.G., Donnelly R.A., Levy M., Palke W.E., Electronegativity: the Density Functional ViewpointJ. Chem. Phys68(8): 3801-3807 (1978).
[37] Parr R.G., Szentpàly L.v., Liu S., Electrophilicity IndexJ. Am. Chem. Soc121(9): 1922-1924 (1999).
[38] Domingo L.R., Aurell M., Contreras M., Perez P., Quantitative Characterization of the Local Electrophilicity of Organic Molecules Understanding the Regioselectivity on Diels-Alder ReactionsJ.Phys.Chem. A106(29): 6871-6875 (2002).