Introduction of the Environmentally Friendly Sb/TiO2-Fe3O4 Nano Photocatalyst for Removal of Phenolic Compounds

Document Type : Research Article

Authors

1 Department of Environmental Engineering, West Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemistry, Guilan University, Rasht, I.R. IRAN

Abstract

Phenolic compounds are among of current pollutants of water resources. Photodegradation by using semiconductor nano photocatalyst is an effective and practicable method for the removal of these compounds. In this research, Sb/TiO2-Fe3O4 nano photocatalyst with 0 to 10 %w/w Sb was successfully synthesized and their structure was characterized by FT-IR, XRD, SEM methods. The size of synthesized particles was calculated using the XRD pattern and Scherrer equation which is accordant to the average size of nanoparticles observed in SEM images that were about 50 nm. Furthermore, the effects of various parameters including the initial pollutant and antimony concentrations, temperature, pH and the amount of catalyst were investigated. The phenol and 4-nitrophenol were degraded 70.1% and 95% with Sb/TiO2-Fe3O4 (5 %w/w Sb), respectively.

Keywords

Main Subjects


[1] Faisal M., Khan S.B., Rahman M.M., Jamal A., Akhtar K., Abdullah M.M., Role of ZnO-CeO2 Nanostructures as a Photo-Catalyst and Chemi-SensorJ. Mater. Sci. Technol.27(7): 594–600 (2011).
[2] Sullivan J. B., Krieger G. R., "Clinical Environmental Health and Toxic Exposures", Lippincott Williams & Wilkins, (2001).
[3] Verschueren K., "Handbook of Environmental Data on Organic Chemicals", no. 4th ed., (2001).
[4] Patterson J.W., "Industrial Wastewater Treatment Technology", Ann Arbor Sci. Pub
Ann Arbor: 199–215 (1985).
[5] Maleki A., Mahvi A. H., Alimohamadi M., Ghasri A., Advanced Oxidation of Phenol 
by Ultraviolet Irradiation in Aqueous System
Pakistan J. Biol. Sci.9(12): 2338–2341 (2006).
[6] Edwards J. D., "Industrial Wastewater TreatmentA Guidebook", Florida: CRC Lewis Publishers (1995).
[7] Kreyling W. G., Semmler-Behnke M., Chaudhry Q., A Complementary Definition of Nanomaterial, Nano Today5(3): 165–168,(2010).
[8] Rahman M. M., Jamal A., Khan S. B., Faisal M., Fabrication of Chloroform Sensor Based on Hydrothermally Prepared Low-Dimensional β-FeO3 NanoparticlesSuperlattices Microstruct.50(4): 369–376 (2011).
[9] Khan S.B., Faisal M., Rahman M.M., Jamal A., Exploration of CeO2 Nanoparticles as a Chemi-Sensor and Photo-Catalyst for Environmental Applications, Sci. Total Environ.409(15): 2987–2992 (2011).
[10] Ohtani B., Photocatalyst, in: "Encyclopedia of Applied Electrochemistry", Springer, 1529–1532, (2014).
[11] Liu S.Q., Magnetic Semiconductor Nano-Photocatalysts for the Degradation of Organic Pollutants, Environ. Chem. Lett.,10 (3): 209–216 (2012).
[12] بشارتی سیدانی، عباس؛ غلامی، محمدرضا؛ تخریب فوتوکاتالیستی یک نمونه رنگ آزو به کمک نانوکامپوزیت­های بر پایه 2TiO اصلاح شده با فلزهای Pt، Pd و Ni، نشریه شیمی و مهندسی شیمی ایران، (1)34: 49-39 (1394)
[13] Fallah-Shojaie A., Ghomashpasand M., Photodegradation of PCBs in Waste Transformer Oil by Fe3O4/TiO2 Nanocomposite under Visible LightNanotechnol. Ind. Power Energy Conf.
1–4 (1393).
[14] A. W. W. American Public Health Association Water EnvironmentFederation, "Standard Methods for the Examination of Water and Wastewater", 21st ed. Washington DC: APHA, (2005).
[15] Wei J.H., Leng C.J., Zhang X.Z., Li W. H., Liu Z.Y., Shi J., Synthesis and Magnetorheological Effect of Fe3O4-TiO2 NanocompositeJournal of Physics: Conference Series149(1): 12083 (2009).
[16] Behrad F., Farimani M.H.R., Shahtahmasebi N., Roknabadi M.R., Karimipour M., Synthesis and Characterization of Fe3O4/TiO2 Magnetic and Photocatalyst Bifunctional Core-shell with Superparamagnetic Performance, Eur. Phys. J. Plus130 (7): 1–9,(2015).
[17] Sadeghi B., Baradaran M., SbCl5-SiO2: an Efficient Reagent System for Regio-Chemo-and Stereoselective Claisen-Schmidt Condensation,  Iran. J. Org. Chem. V2(3): 431–435 (2010).
[18] Ferraro J.R., Basile L.J., Eds.," Fourier Transform Infrared Spectra: Applications to Chemical Systems". Academic Press, (2012).
[19] Langxing C.,Yukui Z., Yulu L., Xiwen H., Preparation and Characterization of TiO2-Graphene@Fe3O4 Magnetic Composite and Its Application on the Removal of Trace Microcystin-LR, RSC Adv.4: 56883–56891,(2014).
[20] Xu  J.W., Gao  Z. D., Han K., Liu Y., Song Y.Y., Synthesis of Magnetically Separable Ag3PO4/TiO2/Fe3O4 Heterostructure with Enhanced Photocatalytic Performance under Visible Light for Photoinactivation of Bacteria., ACS Appl. Mater. Interfaces6(17): 15122–31 
(2014).
[22] Mohaghegha N., Eshaghia B., Rahimib E., Gholamia M.R., Ag2CO3 Sensitized TiO2 Nanoparticles Prepared in Ionic Liquid Medium: A New Ag2CO3/TiO2/RTIL Heterostructure with Highly Efficient Photocatalytic ActivityJournal of Molecular Catalysis A: Chemical406: 152–158 (2015).
[23] Benelmadjat H., Boudine B., Halimi O.,Sebais M., Fabrication and Characterization of Pure and Sn/Sb-Doped ZnO Thin Films Deposited by Sol–Gel MethodOpt. Laser Technol.41(5): 630–633 (2009).
[24] کاوش، مریم؛ معلمیان، حجت اله؛ کوتی، محمد، سنتز و شناسایی نانو ذرات اکسید روی به روش تجزیه آبی- حرارتی، مجلهعلومپایهدانشگاهآزاداسلامی، (80)21: 25 تا 34 (1390).
[25] Omidi A., Habibi-Yangjeh A., Microwave-Assisted Method for Preparation of Sb-Doped ZnO Nnostructures and Their Photocatalytic Activity, J. Iran. Chem. Soc.11(2): 457–465, (2014).
[26] زمان خان، حسام؛ آیتی، بیتا؛ گنجی دوست، حسین؛ تجزیه فتوکاتالیستی فنل به وسیله نانوذرات روی اکسید تثبیت شده بر بستر بتنی، نشریه شیمی و مهندسی شیمی ایران، (3)31: 19-9 (1391)
 [27] Fallah Moafi H., Fallah Shojaie A., Zanjanchi M. A., The Comparison of Photocatalytic Activity of Synthesized TiO2 and ZrO2 Nanosize onto Wool FibersApplied Surface Science256 (13): 4310–4316 (2010).
[28] حسن زاده، پریسا؛ گنج دوست، حسین؛ آیتی، بیتا؛ بهینه سازی پارامترهای مؤثر بر فرایند تلفیقی اکسایش و اکسایش نوری برای حذف اکسی تتراسایکلین توسط نانوذره های آهن، نشریه شیمی و مهندسی شیمی ایران، (1)32: 34-25 (1392)
[29] Sakthivel S., Neppolian B., Shankar M.V., Arabindoo B., Palanichamy M., Murugesan V., Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2Sol. Energy Mater. Sol. Cells77(1): 65–82 (2003).
[30] Moon J., Takagi H., Fujishiro Y.,  Awano M., Preparation and Characterization of the 
Sb-Doped TiO2 Photocatalysts
,  J. Mater. Sci.36(4): 949–955 (2001).
[31] Mogyorósi K., Farkas A., Dékány I., Ilisz I., Dombi A., TiO2-Based Photocatalytic Degradation of 2-Chlorophenol Adsorbed on Hydrophobic Clay, Environ. Sci. Technol.36(16): 3618–3624, (2002).
[32] Terzian R., Serpone N., Heterogeneous Photocatalyzed Oxidation of Creosote Components: Mineralization of Xylenols by Illuminated TiO2 in Oxygenated Aqueous MediaJ. Photochem. Photobiol. A Chem.89(2): 163–175 (1995).
[34] Kashif N., Ouyang F., Parameters Effect on Heterogeneous Photocatalysed Degradation of Phenol in Aqueous Dispersion of TiO2, J. Environ. Sci.21(4): 527–533 (2009).
[35] Behnajady M. A., Modirshahla N., Hamzavi R., Kinetic Study on Photocatalytic Degradation of CI Acid Yellow 23 by ZnO Photocatalyst,  J. Hazard. Mater.133 (1-3): 226–232 (2006).
[36] Zhao B., Mele G., Pio I., Li J., Palmisano L., Vasapollo G., Degradation of 4-nitrophenol (4-NP) Using Fe–TiO2 as a Heterogeneous Photo-Fenton Catalyst, J. Hazard. Mater.176 (1): 569–574 (2010).
[37] Daneshvar N., Salari D., Khataee A. R., Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2, J. Photochem. Photobiol. A Chem.162(2): 317–322 (2004).
[38] Li Y., Lu Y., Zhu X., Photo-Fenton Discoloration of the Azo Dye X-3B over Pillared Bentonites Containing Iron, J. Hazard. Mater.132(2): 196–201 (2006).
[39] Rahmani A., Enayati Movafagh A., Investigation of Photocatalytic Degradation of Phenol Through UV/TiO2 ProcessWater & Wastewater58: 32–37 (2006).
[40] Javadi A.H., Hemmati Borji S., Nasseri S., Nabizadeh Nodehi R., Mahvi A.H., Photocatalytic Degradation of Phenol in Aqueous Solutions by Fe(III)-Doped TiO2/UV ProcessIran. J. Heal. Environ.3(4): 369–380 (2011).