Theoretical Study of Molecular Interactions of Para-Substituted Benzene Derivatives with Hydrogen Cyanide

Document Type : Research Article

Author

Quchan Branch, Islamic Azad University, Quchan , I.R. IRAN

Abstract

In this study, the effects of non-covalent interactions are considered where the hydrogen cyanide act as a proton donor and different π-systems such as para-substituted (H, F, Cl, OH, SH, CH3, and NH2) benzene derivatives act as a proton acceptor. The complexes are optimized by the B3LYP method using 6-311++G** basis set. The intermolecular interaction energy is determined at the same level with BSSE corrections. In addition to geometrical parameters and binding energies, topological properties of electron charge density are calculated by atoms in molecules (QTAIM) method. Furthermore, the Natural Bond Orbital (NBO) analysis is applied to get a more precise insight into the nature of these interactions. Several correlations between topological, geometrical and energetic parameters are found. Finally, the effects of interactions on NMR data have been used to more investigation of the studied compounds.

Keywords

Main Subjects


[2] Geronimo I., Lee E.C., Singh N.J., Kim K.S., How Different are Electron-rich and Electron-Feficient π Interactions?, J. Chem. Theory Comput., 6: 1931-1934 (2010).
[4] Kim K.S., Tarakeshwar P., Lee J.Y., Molecular clusters of Tt-Systems: Theoretical Studies of Structures, Spectra and Origin of Interaction Energies, Chem. Rev., 100: 4145-4185 (2000).
[5] Meyer E.A., Castellano R.K. and Diederich F., Interactions with Aromatic Rings in Chemical and Biological Recognition, Angew. Chem. Int. Ed., 42: 1210-1250 (2003).
[6] Raju R.K., Bloom J.W.G., An Y., Wheeler S.E., Substituent Effects on Non-Covalent Interactions with Aromatic Rings: Insights from Computational Chemistry, Chem. Phys. Chem., 12: 3116-3130 (2011).
[7] Gal J.-F., Maria P.-C., Decouzon M., Mó O., Yáñez M., Abboud L.M., Lithium-Cation/π Complexes of Aromatic Systems. The Effect of Increasing the Number of Fused Rings, J. Am. Chem. Soc., 125: 10394-10401 (2003).
[8] Frontera A., Quiñonero D., Deyá P.M., Cation-π and Anion-π Interactions, WIREs Comput. Mol. Sci., 1: 440-459 (2011).
[10] Tang T.-H., Hu W.-J., Yan D.-Y., Cui Y.-P., A Quantum Chemical Study on Selected π-Tpe Hydrogen-Bonded Systems, Theochem 207: 319-326 (1990).
[11] Pakiari A.H., Farrokhnia M., Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-Delocalization, Iran. J. Chem. Chem. Eng. (IJCCE), 29: 197-210 (2010).
[12] Li J., Zhang R.-Q., Strong Orbital Interaction in a Weak CH-π Hydrogen Bonding System, Scientific Reports, 6: 22304 (2016).
[13] Nishio M., The CH/π Hydrogen Bond: Implication in Chemistry, Journal of Molecular Structure, 1018: 2–7 (2012).
[14] Zabardasti A., Kakanejadifard A., Ghasemian M., Jamshidi Z., Theoretical Study of Molecular Interactions of Sulfur Ylide with HF, HCN, and HN3, Structural Chemistry, 24: 271–277 (2013)
[15] Roohi H., Nowroozi A.R., Anjomshoa E., H-bonded Complexes of Uracil with Parent Nitrosamine: A Quantum Chemical Study, Comput. Theor. Chem., 965: 211-220 (2011).
[16] Engerer L.K., Hanusa T.P., Geometric Effects in Olefinic Cation–π Interactions with Alkali Metals: A Computational Study, J. Org. Chem., 76: 42–49 (2011).
[17] Roohi H., Bagheri S., Influence of Substitution on the Strength and Nature of CH...N Hydrogen Bond in XCCH...NH3 Complexes,Int. J. Quantum Chem., 111: 961–969 (2011).
[18] Foroutan-Nejad C., Badri Z., Marek R., Multi-Center Covalency: Revisiting the Nature of Anion-π Interactions, Phys. Chem. Chem. Phys., 17: 30670-30679 (2015).
[19] Badri Z., Foroutan-Nejad C., Kozelka J., Marek R., On the Non-Classical Contribution in  Lone-Pair-π Interaction: IQA Perspective, Phys. Chem. Chem. Phys., 17: 26183-26190 (2015).
[20] Desiraju G.R., Steiner T., “The Weak Hydrogen Bond in Structural Chemistry and Biology”, Oxford University Press, New York (1999).
[21] Pimentel G., McClellan A., “The Hydrogen Bond”, Freeman, San Francisco (1960).
[22] Pauling L., “The Nature of the Chemical Bond”, Cornell University Press, Ithaca, New  York (1960).
[23] Novoa J.J., Mota F., D’Oria E., “The nature of C–H...X Intermolecular Interactions in Molecular Crystals: a Theoretical Perspective”, in: Grabowski S.J. (Ed.), “Hydrogen Bonding – New Insights”, in: Leszczynski J. (Ed.), “Challenges and Advances in Computational Chemistry and Physics”, Springer (2006).
[24] Taylor R., Kennard O., Crystallographic Evidence for the Existence of CH...O, CH...N and CH...Cl Hydrogen Bonds, J. Am. Chem. Soc., 104: 5063–5070 (1982).
[25] Desiraju G.R., Hydrogen Bridges in Crystal Engineering:  Interactions without Borders, Acc. Chem. Res., 35: 565-573 (2002).
[26] Pinchas S., Infrared Absorption of the Aldehydic C–H Group, Anal. Chem., 27: 2-6 (1955).
[27] Trudeau G., Dumas J.M., Dupuis P., Guerin M., Sandorfy C., Intermolecular Interactions and  Anesthesia: Infrared Spectroscopic Studies, Topics Current Chem., 93: 91-125 (1980).
[28]  Hobza P., Havlas Z., Blue-Shifting Hydrogen Bonds, Chem. Rev., 100: 4253-4264 (2000).
[29] Satonaka H., Abe K., Hirota M., 13C NMR Spectra of Substituted 2-Thiophene carboxylic Acid Methyl Esters and MNDO Calculations, Bull. Chem. Soc. Jpn., 60: 953-961 (1987).
[30] Hobza P., N-H...F Improper Blue-Shifting H-Bond, Int. J. Quantum Chem., 90: 1071–1074 (2002).
[31] Li X., Liu L., Schlegel H.B., On the Physical Origin of Blue-Shifted Hydrogen Bonds, J. Am. Chem. Soc., 124: 9639-9647 (2002).
[32] Frisch M.J. et al., “GAUSSIAN 03 (Revision B.03)”, GAUSSIAN, Inc., Pittsburgh, PA (2003).
[33] Becke A.D., Density‐Functional Thermochemistry. III. The role of Exact Exchange, J. Chem.  Phys., 98: 5648–5652 (1993).
[35] Bader R.F.W. “Atoms in Molecules: A Quantum Theory”, Oxford University, New York (1990).
[36] Biegler König F., Schönbohm J., Update of the AIM2000-Program for Atoms in Molecules, J. Comput. Chem., 23: 1489–1494 (2002).
[37] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor–Acceptor Viewpoint, Chem. Rev., 88: 899–926 (1988).
[38] Glendening D.E., Reed A.E., Carpenter J.E., Weinhold F., “NBO”, Version 3.1. Gaussian, Inc, Pittsburgh (1996).
[39] Pulay P., Hinton J.F., Wolinski K., In: Tossel J.A. (Ed.), “Nuclear Magnetic Shieldings and Molecular Structure”, Kluwer, The Netherlands (1993).
[40] Hehre W.J., Radom L., Schleyer P.R., Pople J.A., “Ab Initio Molecular Orbital Theory”, Wiley, New York (1986).
[41] Raju Rajesh K., Bloom Jacob W.G., An Yi., Wheeler Steven E., Substituent Effects on Non-Covalent Interactions with Aromatic Rings: Insights from Computational Chemistry, Chem. Phys. Chem., 12(17): 3116–3130 (2011).
[42] Bader R.F.W., A Bond Path: a Universal Indicator of Bonded Interactions, J. Phys.  Chem. A., 102: 7314-7323 (1998).
[45]  Foroutan-Nejad C., Shahbazian S., Marek R., Toward a Consistent Interpretation of the QTAIM: Tortuous Link Between Chemical Bonds, Interactions, and Bond/Line Paths, Chem. Eur. J., 20: 10140-10152 (2014).