Utilization of Poly(acrylic acid)–Bentonite Composite for the Sorption of Chromium from Aqueous Solutions

Document Type : Research Article

Authors

Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, I.R. IRAN

Abstract

The utilization of polymer-clay composites as adsorbents in the remediation of polluted water has been the subject of many recent research studies. In the present work, poly(acrylic acid) –bentonite (PAA-Bentonite), was synthesized and its chromium ion adsorption performance was investigated. The adsorption behavior of the composite towards chromium
from aqueous solution was studied under varying conditions such as initial concentration of chromium (5–500 mg/L) and contact time (30–1440 min). Experimental equilibrium data were fitted to Langmuir and Freundlich isotherm models by non-linear regression method, however, the adsorption equilibrium data were well interpreted by the Langmuir model. The maximum capacity of PAA-Bentonite toward chromium was 29.55 mg/g at 25 °C, which was much higher than that of the Bentonite (1.3 mg/g). The maximum chromium removal efficiency of 85 % was achieved by the composite at 25°C with 30 min contact time for an initial metal concentration of 50 mg/L. The adsorption kinetics followed both pseudo first-order and pseudo second-order models.The results showed the high potential of PAA-Bentonite composite for the removal of chromium ions from aqueous solution.

Keywords

Main Subjects


[1] Olanipekun O., Oyefusi A., Neelgundand G.M., Oki A., Synthesis and Characterization of Reduced Graphite Oxide-Polymer Composites and Their Application in Adsorption of Lead, Spectrochim, Acta part A, 149(5): 991-996 (2015).
[2] Shi Z., Zou P., Guo M., Yao S., Adsorption Equilibrium and Kinetics of Lead Ion onto Synthetic Ferrihydrites, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 25-30 (2015).
[3] Kara A., Demirbel E., Tekin N., Osman B., Besirli N., Magnetic Vinylphenylboronic Acid Microparticles for Cr(VI) Adsorption: Kinetic, Isotherm and Thermodynamic Studies, J. Hazard. Mater., 286(9): 612-623 (2014).
[4] Min G., Sun S., Zheng Z., Tang H., Sheng J., Zhu J., Liu X., Adsorption of Cr(VI) and Cu(II) by AlPO4 Modified Biosynthetic Schwertmannite, Appl. Surf. Sci., 356: 986–997 (2014).
[5] Polowczyk I., Urbano B.F., Rivas B.L., Bryjak M., Kabay N., Equilibrium and Kinetic Study of Chromium Sorption on Resins with Quaternary Ammonium and N-methyl-D-glucamine Groups, Chem. Eng. J., 284: 395–404, (2016).
[8] Hongbo X., Dan-dan L., Lu H., Na Liu., Guiling Ning., Adsorption of Copper(II) from an Wastewater Effluent of Electroplating Industry by Poly(ethyleneimine)-Functionalized Silica, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2): 73-81 (2015).
[9] Mthombeni N.H., Onyango M. S., Aoyi O., Adsorption of Hexavalent Chromium Onto Magnetic Natural Zeolite-Polymer Composite, J. Taiwan Inst. Chem. Eng., 50: 242–251 (2015).
[10] Li Z., Willms C.A., Kniola K., Removal of Anionic Contaminants Using Surfactant Modified Palygorskite and Sepiolite, Clays Clay Miner., 51: 445–451 (2003).
[11] Li Z., Bowman R.S., Retention of Inorganic Oxyanions by Organo-Kaolinite. Water Res., 35: 3771–3776 (2001).
[12] Majdan M., Maryuk O., Gładysz-Płaska A., Pikus S., Kwiatkowski R., Spectral Characteristics of the Bentonite Loaded with Benzyldimethyloctadecylammonium Chloride, Hexadecyltrimethylammonium Bromide and Dimethyldioctadecylammonium Bromide, J. Mol. Struct., 874: 101–107 (2008).
[13] Wang W., Zhou J., Achari G., Yu J., Cai W., Cr(VI) Removal from Aqueous Solutions by Hydrothermal Synthetic Layered Double Hydroxides: Adsorption Performance, Coexisting Anions and Regeneration Studies, Colloids Surf. A: Physicochem. Eng. Aspects, 457: 33–40 (2014).
[14] Pandey S., Mishra S.B., Organic–Inorganic Hybrid of Chitosan/Organoclaybionanocomposites for Hexavalent Chromium Uptake, J. Colloid Interface Sci., 361: 509–520 (2011).
[15] Fu R., Yang Y., Xu Z., Zhang X., Guo X., Bi D., The Removal of Chromium (VI) and Lead (II) from Groundwater Using Sepiolite-Supported Nanoscale Zero-Valent Iron (S-NZVI), Chemosphere, 138: 726–734 (2015).
[16] Mansria A., Benabadji K.I., Desbrières J., François J., Chromium Removal Using Modified Poly(4-vinylpyridinium) Bentonite Salts, Desalination, 245: 95–107 (2009).
[17] Heitz C., Binana W., Francois J., Biver C., Absorption and Desorption of Chromium Ions by Poly(acrylic acid) Gels, J. Appl. Polym. Sci., 72: 455–466 (1999).
[18] Zhang S., Shu X., Zhou Y., Huang L., Hua D., Highly Efficient Removal of Uranium (VI) from Aqueous Solutions using Poly(acrylic acid)-Functionalized Microspheres, Chem. Eng. J., 253: 55-62 (2014).
[20] Gładysz-Płaska A., Majdan M., Pikus S., Sternik D., Simultaneous Adsorption of Chromium(VI) and Phenol on Natural Red Clay Modified by HDTMA, Chem. Eng. J., 179: 140–150 (2012).
[22] Marjanovic V., Lazarevic S., Jankovic- Castvan I., Potkonjak B., Janackovi Ð., Petrovic R., Chromium (VI) Removal from Aqueous Solutions Using Mercaptosilane Functionalized Sepiolites, Chem. Eng. J., 166: 198–206 (2011).
[23] Beisebekov M.M., Serikpayeva S.B., Zhumagalieva Sh.N., Beisebekov M.K., Abilov Zh.A., Kosmella S., Koetz J., Interactions of Bentonite Clay in Composite Gels of Non-Ionic Polymers with Cationic Surfactants and Heavy Metal Ions, Colloid Polym. Sci., 293: 633–639 (2015).
[24] Liu P., Jiang L., Zhu L., Wang A., Novel Approach for Attapulgite/poly(acrylic acid) (ATP/PAA) Nanocompositemicrogels as Selective Adsorbent for Pb(II) Ion, React. Funct. Polym., 74: 72–80 (2014).
[25] Karimi M., Shojaei A., Nematollahzadeh A., Abdekhodaie M. J., Column Study of Cr (VI) Adsorption Onto Modified Silica–Polyacrylamide Microspheres Composite, Chem. Eng. J., 210: 280–288 (2012).
[26] Sölenera M., Tunalib S., Özcanc A.S., Özcanc A., Gedikbey T., Adsorption Characteristics of Lead(II) Ions Onto the Clay/poly(methoxyethyl)acrylamide (PMEA) Composite from Aqueous Solutions, Desalination, 223: 308–322 (2008).
[27] Unuabonah E.I., Taubert A., Clay–Polymer Nanocomposites (CPNs): Adsorbents of the Future for Water Treatment, Appl. Clay Sci., 99: 83-92 (2014).
[28] Kumar A.S.K., Kalidhasan S., Rajesh V., Rajesh N., Application of Cellulose-Clay Composite Biosorbent Toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater, Ind. Eng. Chem. Res., 51: 58–69 (2012).
[29] Chen D., Li W., Wu Y., Zhu Q., Lu Z., Du G., Preparation and Characterization of Chitosan/montmorillonite Magnetic Microspheres and Its Application for the Removal of Cr (VI), Chem. Eng. J.,  221: 8–15 (2013).
[30] Shirvani M., Rafiei H.R., Bakhtiary S., Azimzadeh B., Amani S., Equilibrium, Kinetic, and Thermodynamic Studies on Nickel Removal from Aqueous Solutions Using Ca-bentonite, Desalin. Water Treat., 54: 464-472 (2014).
[31] Rhoades J.W., In: C.A. Page, “Methods of Soil Analysis”, ASA Press, Madison, WI, USA, pp. 149–158 (1986).
[33] Wang L., Wang A., Adsorption Properties of Congo Red from Aqueous Solution onto Surfactant-Modified Montmorillonite, J. Hazard. Mater., 160: 173–180 (2008).
[34] Mahmoud M.E., Osman M.M., Ahmed S.B., Abdel-Fattah T.M., Improved Adsorptive Removal of Cadmium from Water by Hybrid Chemically and Biologically Carbonaceous Sorbents, Chem. Eng. J., 175: 84–94 (2011).
[35] Nesic A.R., Velickovic S.J., Antonovic D.G., Characterization of Chitosan/Montmorillonite Membranes as Adsorbents for Bezactiv Orange V-3R dye, J. Hazard. Mater., 209–210: 256–263 (2012).
[36] Özcan A.S., Gök O., Özcan A., Adsorption of Lead(II) Ions Onto 8-Hydroxy Quinoline Immobilized Bentonite, J. Hazard. Mater., 161: 499–509 (2009).
[37] Tran N.H., Dennis G.R., Milev A.S., Kannangara G.S.K., Wilson M.A., Lamb R.N., Interactions of Sodium Montmorillonite with Poly(acrylic acid), J. Colloid Interface Sci., 290: 392–396 (2005).
[38] Zhang J., Yuan K., Wang Y., Gu S., Zhang S., Preparation and properties of polyacrylate/Bentonite Superabsorbent Hybrid via Intercalated Polymerization, Mater. Lett., 61: 316–320 (2007).
[39] Koyuncu H., Yıldız N., Salgın U., Köroglu F., Calımlı A., Adsorption of o-, m- and p-Nitrophenols Onto Organically Modified Bentonites, J. Hazard. Mater., 185: 1332–1339 (2011).
[40] Humelnicu D., Dinu M.V., Dragan E.S., Adsorption Characteristics of UO22+ and Th4+ Ions from Simulated Radioactive Solutions Onto Chitosan/Clinoptilolite Sorbents, J. Hazard. Mater., 185:447–455 (2011).
[43] Bhaumik M., Choi H.J., Seopela M.P., McCrindle R.I., Maity A., Highly Effective Removal of Toxic Cr(VI) from Wastewater Using Sulfuric Acid-Modified Avocado Seed, Ind. Eng. Chem. Res., 53: 1214−1224 (2014).
[45] Kumar A. S. K., Ramachandran R., Kalidhasan S., Rajesh V., Rajesh N., Potential application of Dodecylamine Modified Sodium Montmorillonite as an Effective Adsorbent for Hexavalent Chromium, Chem. Eng. J., 211–212: 396–405 (2012).
[46] Brum M.C., Capitaneo J.L., Oliveira J.F., Removal of Hexavalent Chromium from Water by Adsorption Onto Surfactant Modified Montmorillonite. Mine. Eng., 23: 270–272 (2010).
[47] Jinhua W., Xiang Z., Bing Z., Yafei Z., Rui Z., Jindun L., Rongfeng C., Rapid Adsorption of Cr (VI) on Modified Halloysite Nanotubes, Desalination, 259: 22–28 (2010).
[48] Jin X., Jiang M., Du J., Chen Z., Removal of Cr(VI) from Aqueous Solution by Surfactant-Modified Kaolinite, J. Ind. Eng. Chem., (2013).
[49] Wu Y., Luo H., Wang H., Wang C., Zhang J., Zhang Z., Adsorption of Hexavalent Chromium from Aqueous Solutions by Graphene Modified with Cetyltrimethylammonium Bromide, J. Colloid Interface Sci., 394: 183–191 (2013).
[51] Sharma Y.C., Srivastava V., Comparative Studies of Removal of Cr(VI) and Ni(II) from Aqueous Solutions by Magnetic Nanoparticles, J. Chem. Eng. Data, 56: 819–825 (2011).
[52] Mahapatra A., Mishra B.G., Hota, G., Studies on Electrospun Alumina Nanofibers for the Removal of Chromium(VI) and Fluoride Toxic Ions from an Aqueous System, Ind. Eng. Chem. Res., 52: 1554−1561 (2013).
[53] Albadarin A.B., Mangwandi C., Al-Muhtaseb A.H., Kinetic and Thermodynamics of Chromium Ions Adsorption Onto Low-Cost Dolomite Adsorbent, Chem. Eng. J., 179: 193–202 (2012).
[54] Wan Ngah W.S., Teong, L.C., Hanafiah M.A.K.M., Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review, Carbohydr. Polym., 83: 1446–1456 (2011).
[55] Abu-Zurayk R.A., Al Bakain R.Z., Hamadneh I., Al-Dujaili A.H., Adsorption of Pb(II), Cr(III) and Cr(VI) from Aqueous Solution by Surfactant-Modified Diatomaceous Earth: Equilibrium, Kinetic and Thermodynamic Modeling Studies, Int. J. Miner. Process., 140: 79–87 (2015).
[56] Boroumand Jazi M., Arshadi M., Amiri M.J., Gil A., Kinetic and Thermodynamic Investigations of Pb(II) and Cd(II) Adsorption on Nanoscale Organo-Functionalized SiO2-Al2O3, J. Colloid Interface Sci., 422: 16–24 (2014).