Kinetic Study of Ethylene Hydrate Formation in Presence of Silver Nanoparticles Suspension

Document Type : Research Article

Authors

1 Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143 Tehran, I.R. IRAN

2 Petroleum Engineering Department, Chemistry & Chemical Engineering Research Center of Iran, Tehran, I.R. IRAN

Abstract

In this research, investigation of ethylene hydrate formation kinetics was carried out in the presence of nanosilver suspension. The hydrate formation induction time was measured at 4˚C and initial pressures of 14 and 16 bar. According to the results, ethylene hydrate formation induction time decreased at all concentrations of nanosilver suspension in comparison to pure water. Also, the minimum induction time at the pressure of 14 bar was 21 minutes and at the pressure of 16 bar was 17 minutes which compared to pure water, 93% and 87% decrease was observed, respectively. Hydrate formation tests were also performed at 1.5˚C and 30 bar. Based on the results, in the presence of this suspension, hydrate storage capacity increased compared to pure water. The maximum storage capacity of 151.85 was achieved for 5 ppm of nanosilver suspension suggesting 261.3% increase compared to pure water.

Keywords

Main Subjects


[1] Sloan E.D., Fundamental Principles and Applications of Natural Gas Hydrates, Nature, 426(6964): 353–363 (2003).
[2] Sloan E.D., Koh C., "Clathrate Hydrates of Natural Gases", CRC press (2007).
[3] Hao W., Wang J., Fan S., Hao W., Evaluation and Analysis Method for Natural Gas Hydrate Storage and Transportation ProcessesEnergy Convers. Manag., 49(10): 2546–2553 (2008).
[4] Javanmardi J., Nasrifar K., Najibi S.H., Moshfeghian M., Economic Evaluation of Natural Gas Hydrate as an Alternative for Natural Gas Transportation, Appl. Therm. Eng., 25(11): 1708–1723 (2005).
[5] Warzinski R.P., Riestenberg D.E., Gabitto J., Haljasmaa I.V., Lynn R.J., Tsouris C., Formation and Behavior of Composite CO2 Hydrate Particles in a High-Pressure Water Tunnel Facility, Chem. Eng. Sci., 63(12): 3235–3248 (2008).
[8] Ngema P.T., Petticrew C., Naidoo P., Mohammadi A.H., Ramjugernath D., Experimental Measurements and Thermodynamic Modeling of the Dissociation Conditions of Clathrate Hydrates for (Refrigerant+ NaCl+ Water) Systems, J. Chem. Eng. Data, 59(2): 466–475 (2014).
[9] پارسامهر، صدیقه؛ ورامینیان، فرشاد؛ روستا، هادی؛ توحیدی، بهمن،  بررسی اثر سینتیکی مبرد R22 در غلظت­های کم بر روی تشکیل هیدرات متان، نشریه شیمی و مهندسی شیمی ایران، (2) 32: 41 تا 45 (1392).
[10] Karimi R., Varaminian F., Izadpanah A.A., Mohammadi A.H., Effects of Different Surfactants on the Kinetics of Ethane‐Hydrate Formation: Experimental and Modeling Studies, Energy Technol., 1(9): 530–536 (2013).
[11] Du J., Li H., Wang L., Effects of Ionic Surfactants on Methane Hydrate Formation Kinetics in a Static System, Adv. Powder Technol., 25(4): 1227–1233 (2014).
[12] Saw V.K., Gudala M., Udayabhanu G., Mandal A., Laik S., Kinetics of Methane Hydrate Formation and Its Dissociation in Presence of Non-Ionic Surfactant Tergitol, J. Unconv. Oil Gas Resour., 6: 54–59 (2014).
[14] Kakati H., Mandal A., Laik S., Promoting Effect of Al2O3/ZnO-Based Nanofluids Stabilized by SDS Surfactant on CH4+C2H6+C3H8 Hydrate Formation, J. Ind. Eng. Chem., 35: 357–368 (2016).
[15] Zhou S.D., Yu Y.S., Zhao M.M., Wang S.L., Zhang G.Z., Effect of Graphite Nanoparticles on Promoting CO2 Hydrate Formation, Energy & Fuels, 28(7): 4694–4698 (2014).
[16] Mohammadi A., Manteghian M., Haghtalab A., Mohammadi A.H., Rahmati-Abkenar M., Kinetic Study of Carbon Dioxide Hydrate Formation in Presence of Silver Nanoparticles and SDS, Chem. Eng. J., 237: 387–395 (2014).
[17] Pahlavanzadeh H., Rezaei S., Khanlarkhani M., Manteghian M., Mohammadi A.H., Kinetic Study of Methane Hydrate Formation in the Presence of Copper Nanoparticles and CTAB, J. Nat. Gas Sci. Eng., 34: 803–810 (2016).
[18] Fakharian H., Ganji H., Naderi-far A., Kameli M., Potato Starch as Methane Hydrate Promoter, Fuel, 94: 356–360 (2012).
[19] Aliabadi M., Rasoolzadeh A., Esmaeilzadeh F., Alamdari A., Experimental Study of Using CuO Nanoparticles as a Methane Hydrate Promoter, J. Nat. Gas Sci. Eng., 27: 1518–1522 (2015).
[20] Ghozatloo A., Shariaty-Niassar M., Hassanisadi M., Effect of Single Walled Carbon Nanotubes on Natural Gas Hydrate Formation, Iran. J. Chem. Eng., 11(3): 67–73 (2014).
[22] Sugahara T., Morita K., Ohgaki K., Stability Boundaries and Small Hydrate-Cage Occupancy of Ethylene Hydrate System, Chem. Eng. Sci., 55(24): 6015–6020 (2000).
[23] Ma C.F., Chen G.J., Wang F., Sun C.Y., Guo T.M., Hydrate Formation of (CH4+C2H4) and (CH4+C3H6) Gas Mixtures, Fluid Phase Equilib., 191(1): 41–47 (2001).
[24] Ghader S., Manteghian M., Kokabi M., Sarraf Mamoory R., Preparation of Truncated Triangular Silver Nanoparticles by a Simple and Rapid Method in Aqueous Solution, Pol. J. Chem., 81(9): 1555–1565 (2007).
[25] Kashchiev D., Firoozabadi A., Nucleation of Gas Hydrates, J. Cryst. Growth, 243(3): 476–489 (2002).
[26] Stryjek R., Vera J.H., PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures, Can. J. Chem. Eng., 64(2): 323–333 (1986).
[27] Klauda J.B., Sandler S.I., A Fugacity Model for Gas Hydrate Phase Equilibria, Ind. Eng. Chem. Res., 39(9): 3377–3386 (2000).