Evaluation of Antibacterial Ability of New Modified Bentonite Compounds Against Aquaculture Pathogenic Bacteria: Aeromonas hydrophila and Streptococcus iniae

Document Type : Research Article

Authors

Department of Natural Resources, Isfahan University of Technology, Isfahan, I.R. IRAN

Abstract

The prevalence of bacterial diseases is one of the most important problems facing Iran's aquaculture industry development. Various gram-positive and negative bacteria such as Aeromonas hydrophila and Streptococcus iniae have caused widespread complications in farmed fish.The use of antibiotics causes problems for human consumers. Therefore, the use of new antimicrobial agents with minimal complications is common. In this research, the structure of bentonite clay was modified using a cationic surfactant and acid-thermoactivated method. Structural studies have shown that changes in the bentonite structure have been achieved through two methods. In this study, antimicrobial activity of two types of modified bentonite against Streptococcus iniae and gram-negative bacterium Aeromonas hydrophila was investigated under laboratory conditions using two methods of bacterial growth inhibition (disc method) and test tube (microdilution). In order to determine the antimicrobial activity, the Minimum Inhibitory Concentration and the Minimum Bactericidal Concentration (MIC and MBC) were determined by microdilution and colony count in Meller Hinton agar culture medium. The results showed that the modified bentonite with cationic surfactant had MBC of 42.85 and 28.57 mg/L for Aeromonas hydrophila in 10 minutes and 30 minutes and 71.42 mg/L in 10 and 30 minutes for Streptococcus iniae, respectively. For the thermoactivation bentonite, MBC was 28.57 and 71.42 mg / L for Aeromonas hydrophila, in 10 and 30 minutes respectively, and 28.57 and 14.28 mg / l for 10 and 30 min for Streptococcus iniae. The results of this study showed that modified bentonite compounds  have strong antimicrobial effects against pathogens in laboratory conditions and can be used as new compounds to control pathogens in aquaculture systems used.

Keywords

Main Subjects


[1] Milani C.J.E., Aziz R.K., Locke J.B., Dahesh S., Nizet V., Buchanan J.T., The Novel Polysaccharide Deacetylase Homologue Pdi Contributes to Virulence of the Aquatic Pathogen Streptococcus iniae, Microbiology journal, 156(2): 543-554 (2010).
[2] Austin B., Austin D.A., "Bacterial Fish Pathogens: Disease of Farmed and Wild Fish". 4th Ed. Springer Pub. New York, (2007).
[3] Akhlaghi M., Keshavarz M., Occurring Streptococcosis Salmon in Farms Province, Iranian Journal of Veterinary Research, 3(2):183-189 (2002).
[4] Handy R., Kammer F., Lead J., Hassellov, M., Owen R., Crane M., The Ecotoxicology and Chemistry of Manufactured Nanoparticles, Ecotoxicology, 17(4): 287-314(2008).
[5] Yousr  A.H., Napis S., Rusul G.R.A., Son R., Detection of Aerolysin and Hemolysin Genes in Aeromonas spp. Isolated from Environmental and Shellfish Sources by Polymerase Chain Reaction. ASEAN Food Journal, 14(3): 115-122 (2007).
[6] Ormen O., Granum P.E., Lassen J., Figueras M.J., Lack of Agreement between Biochemical and Genetic Identification of Aeromonas Spp, Journal of Pathology, Microbiology and Immunology, 113(3): 203-207(2005).
[7] Austin B., Adams C., "Fish pathogens. In: Austin B, Altwegg M, Gosling PJ, Joseph S (eds) The Genus Aeromonas", John Wiley & Sons, Inc., Chichester, p 197–243(1996).
[8] Yogananth N., Bhakyaraj R., Chanthuru, A., Anbalagan, T., Nila K.M., Detection of Virulence Gene in Aeromonashydrophila Isolated from Fish Samples Using PCR Technique, Global Journal of Biotechnology and Biochemistry, 4(1): 51-53 (2009).
[9] Moshtaqi B., Nezami S.H, Khara H., Pazhand Z., ShenaverMasuleh E., Halajian E., Determining of Fatal Density of KmNo4 and CuSo4.H2o in Acipenser Persionbordin, Biology Magazine, 3(2): 67-78 (2009).
[10] شکوه سلجوقی، ظ؛ رفیعی، غ؛ ایمانی، ا؛ بختیاری، م،؛ کاربرد بنتونیت احیا شده به روش اسیدی- گرمایی و سورفکتانت کاتیونی کاهش آلاینده­های زیست محیطی فسفاته و سولفاته در پساب آبزی پروری، مجله محیط شناسی، (38)30: 31 تا 40 (1391) .
[11 شکوه سلجوقی، ظ؛ رفیعی، غ؛ ایمانی، ا؛ بختیاری، م، حذف آلاینده های نیتریت و نیترات از پساب سیستم مدار بسته آبزی پروری توسط بنتونیت های اصلاح شده. مجله آب و فاضلاب، (2)14: 54 -46 (1391).
[12] Sengco M.R., Hagström J.A., Graneli E., Anderson D.M., Removal of Prymnesium Parvum (Haptophyceae) and Its Toxins Using Clay Minerals, Harmful Algae, 4(2): 261–274(2005).
[13] Malek N.A., NurAzalisa, W., Yieh Lin C., Antibacterial Activity of Cetyltrimethylammonium Bromide Modified Silver-Bentonite, Applied Clay Science, 45(4): 265-272 (2016).
[14] Goldstein J. (2003). "Scanning Electron Microscopy and X-Ray Microanalysis". Springer. Retrieved 26 May (2012).
[15] Skoog D. A., West Holt., D. M. . "Principle of Instrumental Analysis", Saunders College Publishing, Sixth ed.. (1994).
[16] NCCLS. "Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically", Approved standard-6th ed. M7-A6. National Committee for Clinical Laboratory Standards, Wayne, Pa (2003).
[17] Jain P., Pradeep T., Potential of Silver Nanoparticle‐Coated Polyurethane Foam as an Antibacterial Water Filter, Biotechnology and Bioengineering, 90(1): 59-63 (2005).
[18] Schwalbe R., Steele-Moore L., Goodwin A. C., "Antimicrobial Susceptibility Testing Protocols". CRC Press. Taylor & Francis Group. London (2007).
[19] Barrett E.P., Joyner L.G., Halenda P.P., The Determination of Pore Volume and Area Distributions in Porous Substance I Computations from Nitrogen Isotherms, Journal of American Chemistry Society, 73(1): 373-380 (1951).
[20] Lv Y., Liu H., Wang Z., Liu S., Hao L., Sang Y., Boughton R. I., Silver Nanoparticle-Decorated Porous Ceramic Composite for Water Treatment, Journal of Membrane Science, 331(3): 50-56 (2009).‏
[22] Rodriguez I., Novoa B., Figueras A., Immune Response of Zebrafish (Danio rerio) Against
a Newly Isolated Bacterial Pathogen (Aeromonas hydrophila)
, Fish & Shellfish Immunology, 25(3): 239-249 (2008).
[23] Zorriehzahra M.J., Hassan H.M.D., Nazari A., Gholizadeh M., Farahi A., Assessment of Environmental Factors Effects on Enteric Redmouth Disease Occurrence in Rainbow Trout (Oncorhynchus mykiss) Farms in Hamedan Province, Iran, Journal of Comparative Clinical Pathology Research, 3(1): 79-85 (2012).
[24] Soltani M., Ghodratnama M., Taheri Mirghaed A., Zargar A., Rooholahi S., The Effect of Zataria Multiflora Boiss and Rosmarinus Officinalis Essential oil on Streptococcus Iniae Isolated from Rainbow Trout Farms, Journal of Veterinary Microbiology, 9(26): 1-11(2013).
[25] Johari1 S.A., Kalbassi M. R., Yu J., Inhibitory Effects of Silver Zeolite on in Vitro Growth of Fish Egg Pathogen, Saprolegnia spJournal of Coastal Life Medicine, 2(5): 357-361(2014).
[26] Sarkheil M., Sourinejadad I., Mirbakhsh M., Kordestanid D., Joharie S.A., Application of Silver Nanoparticles Immobilized on TEPA-Den-SiO2 as Water Filter Media for Bacterial Disinfection in Culture of Penaeid Shrimp Larvae, Aquacultural Engineering, 74(5): 17–29 (2016).
[27] Aiad I.A., Badawi A.M., El-Sukkary M.M., El-Sawy A.A., Adawy A.I., Synthesis and Biocidal Activity of Some Naphthalene-Based Cationic Surfactants, Journal of Surfactants and Detergents, 15(3): 223-234(2012).
[28] Zhi L., Li Q., Li Y., Sun Y., Self-Aggregation and Antimicrobial Activity of Saccharide-Cationic Surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 456(4): 231-237(2014).
[29] Li Z., Bowman R.S., Sorption of Perchloroethylene by Surfactant-Modified Zeolite as Controlled by Surfactant Loading, Environmental Science and Technology, 32(5): 2278-2281(1998).
[29] Sun Kou1 M.R., Mendioroz S., Guijarro M.I., A thermal Study of Zr-Pillared Montmorillonite, Thermochimica Acta, 323(1-2): 145-157(1998).