Preparation and Investigation of the Effect of Alginate Nanoparticles Coated by Trimethylchitosan (TMC) and Polyethylene Glycol (PEG) for Oral Delivery of Insulin

Document Type : Research Article


1 Biomedical Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, I.R. IRAN

2 Pharmaceutics Department, Pharmacy Faculty, Tehran University of Medical Sciences, Tehran, I.R. IRAN


In diabetic patients, insulin secretion from the pancreas is altered which leads to daily insulin injection. Insulin injection causes infection, pain, and stress in the long term. Oral insulin delivery can be an appropriate alternative for injection. However, in oral delivery, due to enzymatic degradation in the gastrointestinal tract, low stability in gastric pH, and physical barriers of intestinal epithelium layer, insulin bioavailability is low. Thus, the synthesis of effective carriers such as nanoparticles
can be a suitable solution for protecting sensitive drugs such as insulin. This study aims to develop
a Nano-sized system of alginate/ trimethyl chitosan (TMC)/ polyethylene glycol (PEG) system in order to control the insulin release and increase the residence time of the
nanoparticles in the gastrointestinal tract. At first, the size of the nanoparticles and Entrapment Efficiency (EE) of insulin were optimized and the optimal conditions for alginate/ insulin, alginate/ TMC ratios, and stirring rate were 1, 4.5, and 500 rpm, respectively. Then, at optimal conditions, insulin loaded alginate nanoparticles were prepared, followed by coating with TMC and finally, the nanoparticles were PEGylated with methoxy polyethylene glycol (mPEG). After optimization, the sizeof the nanoparticles and EE obtained as 195 nm and 92.39%, respectively, and Loading Efficiency (LE) of insulin was calculated as 21.75%. Interaction between the different layers also, was verified using FT-IR analysis andin vitro, insulin release investigation was carried out in Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF). These studies showed that the highest insulin release takes place within the initial 6 h, and then the release trend will be constant. Also, insulin release significantly was increased by nanoparticle pegylation.


Main Subjects

[1] Li L., Jiang G., W. Yu G., Liu D., Chen H., Liu Y., Tong Z., Kong X., Yao J., Preparation of Chitosan-Based Multifunctional Nanocarriers Overcoming Multiple Barriers for Oral Delivery of Insulin, Mater. Sci. Eng. C, 70: 278–286 (2017).
[2] Schiffter H. A., "The Delivery of Drugs – Peptides and Proteins", Second Edi., Vol. 1. Elsevier (2011).
[3] Mukhopadhyay P., Mishra R., Rana D., Kundu P. P., Strategies for Effective Oral Insulin Delivery with Modified Chitosan Nanoparticles: A Review, Progress in Polymer Science, 37(11): 1457–1475 (2012).
[4] Fonte P., Araújo F., Silva C., Pereira C., Reis S., Santos H. A., Sarmento B., Polymer-Based Nanoparticles for Oral Insulin Delivery: Revisited Approaches, Biotechnol. Adv., 33(6): 1342–1354 (2015).
[5] Tahtat D., Mahlous M., Benamer S., Khodja A. N., Oussedik-Oumehdi H., Laraba-Djebari F., Oral Delivery of Insulin from Alginate/Chitosan Crosslinked by Glutaraldehyde, Int. J. Biol. Macromol., 58: 160–168 (2013).
[6] Sarmento B., Ribeiro A., Veiga F., Sampaio P., Neufeld R., Ferreira D., Alginate/Chitosan Nanoparticles are Effective for Oral Insulin Delivery, Pharm. Res., 24(12): 2198–2206 (2007).
[7] Sarmento B., Ribeiro A. J., Veiga F., Ferreira D. C., Neufeld R. J., Insulin-Loaded Nanoparticles are Prepared by Alginate Ionotropic Pre-Gelation Followed by Chitosan Polyelectrolyte Complexation, J. Nanosci. Nanotechnol., 7(5): 1–9 (2007).
[8] Sarmento B., Ferreira D. C., Jorgensen L., van de Weert M., Probing Insulin’s Secondary Structure after Entrapment Into Alginate/Chitosan Nanoparticles, Eur. J. Pharm. Biopharm., 65(1): 10–17 (2007).
[9] Mansourpour M., Mahjub R., Amini M., Ostad S. N., Shamsa E. S., Rafiee-Tehrani M., Dorkoosh F. A., Development of Acid-Resistant Alginate/Trimethyl Chitosan Nanoparticles Containing Cationic β-Cyclodextrin Polymers for Insulin Oral Delivery., AAPS PharmSciTech, 16(4): 952–62 (2015).
[10] Woitiski C. B., Sarmento B., Carvalho R. A., Neufeld R. J., Veiga F., Facilitated Nanoscale Delivery of Insulin Aross Intestinal Membrane Models, Int. J. Pharm., 412(1-2): 123–131 (2011).
[11] BAJPAI J., BAJPAI A. K., MISHRA S., Dynamics of Controlled Release of Potassium Nitrate from a Highly Swelling Binary Biopolymeric Blend of Alginate and Pectin, J. Macromol. Sci. Pure Appl. Chem., 43(1): 165–186 (2007).
[12] مولوی، بهناز؛ حبیبی، علیرضا؛ فتاحی، علی؛ بهینه سازی فرایند انکپسوله سازی دارو در میکروذره­های کروی چیتوسان با استفاده از روش الکترواسپری هم محور، نشریه شیمی و مهندسی شیمی ایران، (4)35: 71 تا 85 (1395).
 [13] Bayat A., Dorkoosh F. A., Dehpour A. R., Moezi L., Larijani B., Junginger H. E., Rafiee-Tehrani M., Nanoparticles of Quaternized Chitosan Derivatives as a Carrier for Colon Delivery of Insulin: Ex Vivo and in Vivo Studies, Int. J. Pharm., 356(1-2): 259–266 (2008).
[14] de Britto D., de Moura M. R., Aouada F. A., Mattoso L. H.C., Assis O. B.G., N,N,N-Trimethyl Chitosan Nanoparticles as a Vitamin Carrier System, Food Hydrocoll., 27(2): 487–493 (2012).
[15] Sandri G., Bonferoni M. C., Rossi S., Ferrari F., Boselli C., Caramella C., Insulin-Loaded Nanoparticles Based on N-Trimethyl Chitosan: in Vitro (Caco-2 model) and ex Vivo (excised rat jejunum, duodenum, and ileum) Evaluation of Penetration Enhancement Properties, AAPS Pharm. Sci. Tech., 11(1): 362–71 (2010).
[16] Casettari L., Vllasaliu D., Castagnino E., Stolnik S., Howdle S., Illum L., PEGylated Chitosan Derivatives: Synthesis, Characterizations and Pharmaceutical Applications, Prog. Polym. Sci., 37(5): 659–685 (2012).
[17] Mao S., Shuai X., Unger F., Wittmar M., Xie X., Kissel T., Synthesis, Characterization and Cytotoxicity of Poly(ethylene glycol)-graft-trimethyl Chitosan Block Copolymers, Biomaterials, 26(32): 6343–6356 (2005).
[18] Malhotra M., Lane C., Tomaro-Duchesneau C., Saha S., Prakash S., A Novel Method for Synthesizing PEGylated Chitosan Nanoparticles: Strategy, Preparation, and in Vitro Analysis, Int. J. Nanomedicine, 6: 485–494 (2011).
[20] Mao S., Germershaus O., Fischer D., Linn T., Schnepf R., Kissel T., Uptake and Transport of PEG-Graft-Trimethyl-Chitosan Copolymer-Insulin Nanocomplexes by Epithelial Cells, Pharm. Res., 22(12): 2058–2068 (2005).
[21] Jintapattanakit A., Junyaprasert V. B., Kissel T., The Role of Mucoadhesion of Trimethyl Chitosan and PEGylated Trimethyl Chitosan Nanocomplexes in Insulin Uptake, J. Pharm. Sci., 98(12): 4818–4830 (2009).
[23] نبوی­منش، محمدمهدی؛ "پوشش­دهی سطح جزایر لانگرهانس با استفاده از ترکیب روش کپسوله کردن و پگیله کردن"، پایان­نامه کارشناسی ارشد، دانشگاه تربیت مدرس، (1391).
[24] Mortazavian E., Amini M., Dorkoosh F.A., Amini H., Khoshayand M.R., Amini T., Rafiee-Tehrani M., Preparation, Design for Optimization and in Vitro Evaluation of Insulin Nanoparticles Integrating Thiolated Chitosan Derivatives, J. Drug Deliv. Sci. Technol., 24(1): 40–49 (2014).
[26] Sieval A.B., Thanou M., Kotze A.F., Verhoef J.C., Brussee J., Junginger H.E., Preparation and NMR Characterization of Highly Substituted N-trimethyl Chitosan Chloride, Carbohydr. Polym., 36(2–3): 157–165 (1998).
[27] Mourya V.K., Inamdar N.N., Trimethyl Chitosan and Its Applications in Drug Delivery, J. Mater. Sci. Mater. Med., 20(5): 1057–1079 (2009).
[28] Verheul R.J., Amidi M., van der Wal S., van Riet E., Jiskoot W., Hennink W.E., Synthesis, Characterization and in Vitro Biological Properties of O-Methyl Free N,N,N-Trimethylated Chitosan, Biomaterials, 29(27): 3642–3649 (2008).
[29] Coates J., "Interpretation of Infrared Spectra , A Practical Approach", in: "Encycl. Anal. Chem.", John Wiley & Sons, pp. 10815–10837, (2000).
[30] Pavia D.L., Lampman G.M., Kriz G.S., "Introduction to Spectroscopy: A Guide for Students of Organic Chemistry. Cengage Learning", Harcourt College Publishers, (2009).
[31] Lawrie G., Keen I., Drew B., Chandler-Temple A., Rintoul L., Fredericks P., Grondahl L., Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS, Biomacromolecules, 8(8): 2533–41(2007).
[32] Avadi M.R., Sadeghi A.M.M., Mohammadpour N., Abedin S., Atyabi F., Dinarvand R., Rafiee-Tehrani M., Preparation and Characterization of Insulin Nanoparticles Using Chitosan and Arabic Gum with Ionic Gelation Method, Nanomedicine Nanotechnology, Biol. Med., 6(1): 58–63 (2010).