The Investigation of the Structure and Stability of Catechol Complexes with Nitrate and Hydrogen Sulphate Ions through Theoretical Study of Hydrogen Bond

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, I.R. IRAN

Abstract

In this research, the mechanism of complex formation between the catechol with the nitrate and hydrogen sulfate through the hydrogen bond analysis has been investigated. All calculations have been performed by using the Gaussian09 software within the DFT -B3LYP functional and the 6/311++G(d,p) basis set. The thermodynamic parameters of the studied reactions have been fully calculated. NBO analysis showed a proper charge transfer through the H-bondsin complexes. The stabilization energies E(2) have been computed for these complexes and showed that the interaction energy for the HSO4-catechol complex is more than nitrate-catechol. Also, atoms in molecules, analysis has been done and electron density, Laplacian and the ratio of the kinetic energy density to the potential issue have been obtained. Based on this analysis, the electron density is maximum for the nitrate-catechol in the first step and for the HSO4-catechol in the second step. Quantum chemistry reactivity parameters of electronic chemical hardness, electronic chemical potential, and electrophilicity index have been investigated and the probable correlations have been analyzed.

Highlights

 

Keywords

Main Subjects


[2] Hunt P.A., Ashworth C.R., Matthews R.P., Hydrogen Bonding in Ionic LiquidsChem. Soc. Rev.44: 1257-1288 (2015).
[3] Deringer V.L., Englert U., Dronskowski R., Covalency of Hydrogen Bonds in Solids RevisitedChem. Commun., 50: 11547-11549 (2014).
[4] Cao L., Zhao J., Yang D., Yang X.J., Wu., “Hydrogen Bonded Supramolecular Structures”, Chapter 5, Hydrogen Bonding-Driven Anion Recognition, Springer-Verlag Berlin Heidelberg (2015).
[5] Pace C. N., Fu H., Fryar K.L., Landua J., Trevino S.R., Sche D., Thurlkill R.L., Imura S., Scholtz J.M., Gajiwala K., Sevcik J.k., Urbanikova L., Myers J.K., Takano K., Hebert E.J., Shirley B.A., Grimsley G.R., Contribution of Hydrogen Bonds to Protein StabilityProtein Sci23(5): 652-661 (2014).  
[6] Khavani M., Izadyar M., Housaindokht M.R., Theoretical Design of the Cyclic Lipopeptide Nanotube as a Molecular Channel in the Lipid Bilayer, Molecular Dynamics and Quantum Mechanics ApproachPhys. Chem. Chem. Phys., 17(9): 25536-25549 (2015).
[11] Gil D.M., Osiry H., Pomiro F., Varetti E.L., Carbonio R.E., Alejandro R.R., Ben Altabef A., Reguera E., Layered Vanadyl (IV) Nitroprusside: Magnetic Interaction Through a Network of Hydrogen BondsJ. Solid State Chem., 239: 159-164 (2016).
[12] Han Y., Jiang Y., Chen Ch. F., Solid State Self-Assembly of Triptycene-Based Catechol Derivatives by Multiple OH⋯O Hydrogen BondsChin. Chem. Let.24(6): 475-178 (2013).
[15] Abraham M.H., Acree Jr W.E., Earp C.E., Vladimirova A., Whaley W.L., Studies on the Hydrogen Bond Acidity, and other Descriptors and Properties for Hydroxyflavones and HydroxyisoflavonesJ. Mol. Liq., 208: 363-372 (2015).
[17] Siddiqui N., Singh V., Deshmukh M., Gurunath R., Structures, Stability and Hydrogen Bonding in inositol ConformersPhys. Chem. Chem. Phys.17: 18514-18523 (2015).
[18] Nishio M., Umezawa Y., Fantini J., Weiss Ma.,  Chakrabarti P., CH–π Hydrogen Bonds in Biological MacromoleculesPhys. Chem. Chem. Phys., 16: 12648-12683(2014).
[19] Seungjun Y., Jin-Hyoung K., Yang-Jin Ch., Jiwon L., Tae-Sup Ch., Dae W Ch., Chyongjin P., Won-Sik H., Ho-Jin S., Sang O Kang., Stable Blue Phosphorescence Iridium(III) Cyclometalated Complexes Prompted by Intramolecular Hydrogen Bond in Ancillary LigandInorg. Chem.55(7): 3324-3331 ( 2016).
[20] Pakiari  A.H., Farrokhnia M.,Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-delocalization, Iran. J. Chem. Chem. Eng. (IJCCE)29(4): 197-210 (2010).
[22] Kukolich S.G., E., Mitchell G., Carey S. J., Sun M., Sargus B. A., Microwave Structure for the Propiolic Acid–Formic Acid ComplexJ. Phys. Chem. A., 117(39): 9525-9530 ( 2013).
[23] Kontogianni V. G., Charisiadis P., Primikyri A., Pappas Ch. G., Exarchou V., Tzakosa A. G., Gerothanassis I. P., Hydrogen Bonding Probes of Phenol –OH GroupsOrg. Biomol. Chem., 11: 1013-1025 (2013).
[24] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., NakajimaT., Honda Y., Kitao O., Nakai H.,Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador, P., Dannenberg J. J., Dapprich S.; Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A.1, Gaussian, Inc. Wallingford, CT (2009).
[25] Dennington R., Keith T., Millam J., Eppinnett K., Hovell W. L., Gilliland R., Gauss View, Version 5.0. Semichem, Inc: Shawnee Mission, KS (2003).
[26] Chem Draw 6.0; Graphic Representations (Chemical Formulae) of MacromoleculesPure Appl. Chem., 66, 2469-  (1994).
[27] Bader R.F.W., AIM 2000 Program; McMaster University, Hamilton, Canada ( 2000).
[28] Izadyar M., Gholizadeh M., Khavani M., Housaindokht M. R., Quantum Chemistry Aspects of the Solvent Effects on 3,4-Dimethyl-2,5-dihydrothiophen-1,1-dioxide Pyrolysis ReactionJ. Phys. ChemA.117(12):2427-2433 (2013).