Investigation of Aromaticity of Nanocrystals Si24H12 and Si26H12 Using Density Functional Theory

Document Type : Research Article

Authors

Department of Physical Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, I.R. IRAN

Abstract

Geometry, stability, electronic structure, and absorption spectrum of Silicon nanocrystals Si24H12 and Si26H12 were investigated using density functional theory. The results showed that nanocrystals Si26H12 is more stable thanSi24H12 by 9.14 eV, where this stability can be related to the electron delocalization and aromatic behavior of proposed nanocrystals Si26H12.To investigate the nanocrystals' aromaticity properties the NICS, PDI, and PLR indexes were used. The results indicate that Si26H12 nanocrystals have aromatic properties more than benzene. Also, this structure shows a new pattern in the spectrum adsorption. This study reports relevant details for the possible synthesis of over coordinated silicon nanocrystals.

Keywords

Main Subjects


[1] Feixas F., Matito E., Poater J., Sola M., Quantifying Aromaticity with Electron Delocalisation Measures, Chem. Soc. Rev., 44: 6434-6451 (2015).
[2] Schleyer P.von R., Jiao H., What is Aromaticity? Pure Appl. Chem., 68: 209-218 (1996).
[3] Szwacki N. Gonzalez, Weber V., Tymczak C.J., Aromatic Borozene, Nanoscale Res. Lett., 4:1085–1089 (2009).
[4] Iyer S.S., Xie Y.H., Light Emission from Silicon, Science, 260: 40–46(1993).
[6] Cullis A.G., Canham L.T., Visible Light Emission Due to Quantum Size Effects in Highly Porous Crystalline Silicon, Nature, 335: 335–338 (1991).
[7] Wilson W.L., Szajowski P.F., Brus L.E., Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals, Science, 262: 1242–1244 (1993).
[8] Lu Z.H., Lockwood D.J., Baribeau J.-M.,Quantum Confinement and Light Emission in SiO2/Si Superlattices, Nature, 378:258–260(1995).
[9] Mangolini L., Thimsen E., Kortshagen U., High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals, Nano Lett., 5: 655–659(2005).
[10] DeSantis C.J., Sue A.C., Radmilovic A., Liu H., Losovyj Y.B., Skrabalak S.E., Shaping
the Synthesis and Assembly of Symmetrically Stellated au/pd Nanocrystals with Aromatic Additives
., Nano Letters, 14(7): 4145-4150(2014).
[11] Vach H., Electron-Deficiency Aromaticity in Silicon Nanoclusters, J. Chem. Theory Comput.,8: 2088-2094 (2012).
[13] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria H.B., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci C., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., K. Raghavachari, Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez J., Head-Gordon M., Replogle E. S., Pople J. A., Gaussian 03, (2003).
[14] Lee C., Yang W., Parr R. G., Development of the Colle– Salvetti Correlation Energy Formula into a Functional of the Electron Density, Phys. Rev. B: Condens. Matter Mater. Phys., 37: 785–789 (1988).
[15] Krishnan R., Binkley J. S., Seeger R., Pople J. A., Self- Consistent Molecular Orbital Methods. Xx. A Basis Set for Correlated Wave Functions, J. Chem. Phys., 72: 650–654 (1980).
[16] Yang W.H., Lu W.C., Ho K.M., Wang C.Z., Hybrid Silicon–Carbon Nanostructures for Broadband Optical Absorption, RSC Advances., 7(13): 8070-8076(2017).
[17] Voityuk A.A., Solà€ M., Photoinduced Charge Separation in the Carbon Nano-Onion C60@ C240., The Journal of Physical Chemistry, 120(29): 5798-804(2016).
[18] Mayer I., Charge, Bond Order and Valence in the Ab Initio Scf Theory, Chem. Phys. Lett., 97: 270-274 (1983).
[19] Lu T., Chen F., Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33: 580–592 (2012).
[20] Foroutan-Nejad C., Shahbazian S., Feixas F., P. Rashidi-Ranjbar, Sola M., A Dissected Ring Current Model for Assessing Magnetic Aromaticity: A General Approach for both Organic and Inorganic Rings, J. Comput. Chem., 32: 2422-2431 (2011).
[21] Lazzeretti P., “Progress in Nuclear Magnetic Resonance Spectroscopy”, Edited by Emsley J.W., Sutcliffe L.H., (Elsevier, Amsterdam,), Vol. 36, pp. 1–88 (2000).
[22] Fallah-Bagher-Shaidaei, Hossein, Chaitanya S. Wannere, Clémence Corminboeuf, Ralph Puchta, Paul V.R. Schleyer. "Which NICS aromaticity Index for Planar π Rings is best?." Organic Letters, 8: 863-866 (2006).
[23] J. Poater, X. Fradera, M. Duran and M. Sola, The Delocalization Index as an Electronic Aromaticity Criterion: Application to a Series of Planar Polycyclic Aromatic Hydrocarbons, Chem.–Eur. J., 9: 400–406(2003).
[24] Nick Sablon, wza Frank De Proft, wa Miquel Sola` b, Paul Geerlingsw ,The Linear Response Kernel of Conceptual DFT as a Measure of Aromaticity, Phys. Chem.Chem. Phys., 14: 3960–3967(2012).
[25] Behzadi H., Zahra khalilnia, Aromatic-Like Behavior of Germanium Nanocrystals, RSC Adv., 6: 47434-47442 (2015).
[26] Vach H., Ultrastable Silicon Nanocrystals due to Electron Delocalization, Nano Lett., 11: 5477-5481 (2011).