Determination of the Optimized Conditions for Preparation of Bis-GMA Based Dental Composite Reinforced by a Nanostructure of Silica Aerogel

Document Type : Research Article

Authors

1 Department of Textile Engineering, Isfahan University of Technology, P.O. Box 84156-83111 Isfahan, I.R. IRAN

2 Department of Chemical Engineering, Isfahan University of Technology, P.O. Box 84156-83111 Isfahan, I.R. IRAN

Abstract

In the present research, a new dental composite based on bisphenol A-glycidyl methacrylate (Bis-GMA)/triethylene ­glycol dimethacrylate (TEGDMA) containing a hydrophobic silica aerogel filler with a porosity more than 80%, the average pore size of 10 nm, and specific surface area of 811 m2/g was prepared. The effect of important processing parameters including light exposure time, the mass ratio of the resins, and preparation method on the properties of the composite was investigated. The characterization of silica aerogel and investigation of the dental composite properties were performed by FT-IR, adsorption/desorption of nitrogen, color change, and compressive strength. The results showed that the use of silica aerogel filler increases the whiteness index of the composite in comparison with the primary resin. By increasing the light exposure time to 40 s, the yellowness index of the composite was significantly decreased, while the whiteness index was increased. After that, both indexes remained constant. The compressive strength of the dental composite was increased up to 50% in the presence of aerogel particles. In addition, the composite prepared by Bis-GMA/TEGDMA with a mass ratio of 50/50 showed a higher compressive strength, due to the low viscosity of the resin which has a better penetration into the pores of the filler, in comparison with the composite prepared by a 30/70 mass ratio. The composite with a higher compressive strength was prepared by mixing silica aerogel with a more dilute monomer TEGDMA and then vacuum degassing and mixing with Bis-GMA and the initiator. The use of silica aerogel as a reinforcement of the dental resin also resulted in increasing the percentage of the cell survival and decreasing the toxicity of the prepared dental composite.

Keywords

Main Subjects


[2] Sachdeva S., Kapoor P., Tamrakar AK., Noor R., Nano-Composite Dental Resins: An Overview, Annals of Dental Specialty, 25: 52-55 (2015).
[3] Sakaguchi L.R., Powers J.M., "Craig's Restorative Dental Materials", Elsevier Health Sciences, USA (2012).
[4] Zandinejad A.A., Atai M., Pahlevan A., The Effect of Ceramic and Porous Fillers on the Mechanical Properties of Experimental Dental Composites, Dent. Mater., 22: 382-387 (2006).
[5] Samuel S.P., Li S., Mukherjee I., Guo Y., Patel A.C., Baran G., Wei Y., Mechanical Properties of Experimental Dental Composites Containing a Combination of Mesoporous and Nonporous Spherical Silica as Fillers, Dent. Mater., 25: 296-301 (2009).
[6] Tian M., Gao Y., Liu Y., Liao Y.L., Hedin N.E., Fong H., Fabrication and Evaluation of BIS-GMA/TEGDMA Dental Resins/Composites Containing Nano Fibrillar Silicate, Dent. Mater., 24: 235-243 (2008).
[7] Chen C.Y., Huang C.K., Lin S.P., Han J.L., Hsieh K.H., Lin C.P., Low-Shrinkage Visible-Light-Curable Urethane-Modified Epoxy Acrylate/SiO2 Composites as Dental Restorative Materials, Compos. Sci. Technol., 68: 2811-2817 (2008).
[8] Mortazavi-Derazkola S., Salavati-Niasari M., Khojasteh H., Amiri O., Ghoreishi SM., Green Synthesis of Magnetic Fe3O4/SiO2/Hap Nanocomposite for Atenolol Delivery and in Vivo Toxicity Study, J. Clean. Prod., 168: 39-50 (2017).
[9] Teymourinia H., Salavati-Niasari M., Amiri O., Farangi M., Facile Synthesis of Graphene Quantum Dots from Corn Powder and Their Application as Down Conversion Effect in Quantum Dot-Dye-Sensitized Solar Cell, J. Mol. Liq., 251: 267-272 (2018).
[11] معذی زاده، مریم؛ بررسی استحکام فشاری کامپوزیت های هیبرید و نانوکامپوزیت­ها، مجله دانشکده دندانپزشکی دانشگاه علوم پزشکی شهید بهشتی، 1: 25 تا 26 (1391).
[12] کیانی منش، نسرین؛ علوی، علی اصغر؛ شفیق، الناز؛ عطایی، محمد؛ بررسی اثر فیلرهای نانوپوروس و روش­های نوردهی بر میزان انقباض پلیمریزاسیون ودرجه ی تبدیل یک کامپوزیت آزمایشی، مجله دندانپزشکی دانشگاه علوم پزشکی شیراز، 11: 183 تا 191(1389).
[13] Zandinejad A.A., Atai M., Pahlevan A., The Effect of Ceramic and Porous Fillers on the Mechanical Properties of Experimental Dental Composites, Dent. Mater., 20: 382-387 (2006).
[14] بختیاری دوست، ابراهیم؛ احتشامی، علی ­اصغر؛ رخشان، قیس؛ کرمی، اصغر؛ ساخت سیلیکاژل دانسیته پایین با استفاده از مایع­ های فوق بحرانی، نشریه شیمی و مهندسی شیمی ایران،32: 1 تا 16 (1392).
[15] Guihong H., Chaolei L., Yongsheng Zh., Wei W., "Characterization of Minerals, Metals and Materials", Springer,  Switzerland (2018).
[16] Hsieh T.H., Huang Y.Sh., Shen M.Y., Mechanical Properties and Toughness of Carbon Aerogel/Epoxy Polymer Composites, Mater. Sci., 50(8): 3258-3266 (2015).
[17] Soleimani Dorcheh A., Abbasi M.H., Review: Silica aerogel; Synthesis, Properties and Characterization, Mater. Process. Technol., 193: 10-26 (2008).
[18] Najafi H., Zadhoush A., Talebi Z., Rezazadeh Tehrani S.P., Influence of Porosity and Aspect Ratio of Nanoparticles on the Interface Modification of Glass/Epoxy Composites, Polym. Compos., [Article In Press] (2017).
[19] Wei G., Liu Y., Zhang X., Yu F., Du X., Thermal Conductivities Study on Silica Aerogel and Its Composite Insulation Materials, Int. J. Heat Mass Transfer, 54: 2355-2366 (2011).
[20] Mustafa S.A.B.S., Mohamed R., Zakaria N.Z.I., Rustam H.B., Thermal Characterisation of Thermoset Polyester Resin Filled Recycle Expanded Polystyrene Composite with Aerogel and Alumina Additives, Adv. Mater. Res., 664: 600-604 (2013).
[21] Talebi Mazraeh-shahi Z., Mousavi Shoushtari A., M. Abdouss, Bahramian A.R., Relationship Analysis of Processing Parameters With Micro and Macro Structure of Silica Aerogel Dried at Ambient Pressure, Non. Cryst. Solids., 376: 30-37 (2013).
[22] عطایی، محمد؛ عسکری، فهیمه ؛ نکومنش، مهدی؛ هاشمی، سید علی؛ سنتز و شناسایی مونومر بیس­فنول A-گلیسیدیل­متاکریلات و بررسی خواص فیزیکی و مکانیکی کامپوزیت دندانی تهیه شده از آن، مجله علوم و تکنولوژی پلیمر، 5: 315 تا 321 (1381).
[23] عترتی خسروشاهی، سید محمد؛ نوربخش، سید محمد صادق؛ اثر طول موج و شدت تابش لیزر آرگون روی خواص فیزیکی و مکانیکی رزین دندانی، مجله علوم و تکنولوژی پلیمر، 19: 387 تا 394 (1385).