Synthesis and Application of Silica Bonded Chlorosulfony Calix[4]arene as a NMR Shift Reagent

Document Type : Research Article


1 Chemistry Department, Islamic Azad University, North Tehran Branch, , Tehran, I.R. IRAN

2 Chemistry Department, Islamic Azad University, North Tehran Branch, Tehran, I.R. IRAN

3 Chemistry and Chemical Engineering Research Center of Iran, Tehran, I.R. IRAN


This study presents the synthesis and application of silica bonded Chlorosulfonyl –Calix[4]arene (CSC[4]A-SiO2) as a 1H NMR shift reagent for couples of rubber chemical additives such as Diphenylguanidine (DPG), N-Cyclohexyl-2-benzothiazolesulfenamide (CBS) and 2-Mercaptobenzothiazole (MBT).  Results of the study showed that supramolecular host [CSC[4]A-SiO2] has utility as a new, aqueous 1H NMR shift reagent for DPG and CBS (as ordinary accelerators in the manufacture of rubber compounds) via a host-guest molecular recognition process that occurs by electrostatic interaction and hydrogen bonding between hydroxyl groups of Calix[4]arene moiety and the NH group of DPG and CBS molecules.


Main Subjects

[1] Ren J., Sherry, A.D., 7Li, 6Li, 23Na and 133Cs Multinuclear NMR Studies of Adducts Formed with Shift Reagent, TmDOTP 5, Inorg. Chim. Acta, 246: 331-341 (1996).
[2] Wainer I.W., Tischler M.A., Sheinin E.B., Determination of Dextro and Levomethorphan Mixtures Using Chiral Lanthanide NMR Shift Reagents, J. Pharm .Sci, 69(4): 459-461 (1980).
[4] Tanaka K., Nakai Y., Takahashi H., Efficient NMR Chiral Discrimination of Carboxylic Acids Using Rhombamine Macrocycles as Chiral Shift Reagent, Tetrahedron: Asymmetry, 22: 178-184 (2011).
[5] Kagawa M., Machida Y., Nishi H., Haginaka J., Enantiomeric Purity Determination of Acetyl-L-carnitine by NMR with Chiral Lanthanide Shift Reagents, J. Pharm. Biomed. Anal, 38: 918-923 (2005).
[6] Arnaud G.F., Florini N., Caglioti L., Zucchi C., Palyi G., Fast Enantioselective Amino Acid Quantitative 13C NMR Determination by a Praseodymium Chiral Shift Reagent, Tetrahedron: Asymmetry, 20: 1633-1636 (2009).
[7] Ramasamy R., Castro M.M.C.A., Freitas D.M., Geraldes C.F.G.C., Lanthanide Complexes of Aminophosphonates as Shift Reagents for 7Li and 23Na NMR Studies in Biological Systems, Biochim, 74: 777-783 (1992).
[8] Joseph-Nathan P., Abramo-Bruno D., Torres M.A., Structural Elucidation of Polymethoxyflavones from Shift Reagent Proton NMR Measurements, Phytochem, 20: 313-318 (1981).
[9] Muller C.A., Market C., Teichert A.M., Pfaltz A., Mass Spectrometric Screening of Chiral Catalysts and Catalyst Mixtures, Chem. Commun., 12: 1607-1618 (2009).
[10] Liu H.-L., Hou X.-L., Pu L., Enantioselective Precipitation and Solid-State Fluorescence Enhancement in the Recognition of α-Hydroxycarboxylic Acids, Angew. Chem. Int. Etd., 48: 382-385 (2009).
[11] Nieto S., Lynch V.M., Anslyn E.V., Kim H., Chin J., High-Throughput Screening of Identity, Enantiomeric Excess, and Concentration Using MLCT Transitions in CD Spectroscopy, J. Am. Chem. Soc., 130: 9232-9233 (2008).
[12] Abato P., Seto C.T., An Enzymatic Method for Determining Enantiometric Excess, J. Am. Chem. Soc., 123: 9206-9207 (2001).
[13] Lei X., Liu L., Chen X., Yu X., Ding L., Zhang A., Pattern-Based Recognition for Determination of Enantiomeric Excess, Using Chiral Auxiliary Induced Chemical Shift Perturbation NMR, Org. Lett., 12: 2540-2543 (2010).
[14] Naziroglu H.N., Durmaz M., Bozkurt S., Yilmaz M., Sirit A., Application of L-proline Derivatives as Chiral Shift Reagents for Enantiomeric Recognition of Carboxylic Acids, Chirality, 23: 463-471 (2011).
[15] Liu L., Ye M., Hu X., Yu X., Zhang L., Lei X., Chiral Solving Agents for Carboxylicacids Based on the Salen Moiety, Tetrahedron: Asymmetry, 22: 1667-1671 (2011).
[16] He C., Zhang Q., Wang W.T., Lin L.L., Liu X.H., Feng X.M., Enantioselective Recognition of α-Hydroxycarboxylic Acids and N-Boc-Amino Acids by Counterion-Displacement Assays with a Chiral Nickel(II) Complex, Org. Lett., 13: 804-807 (2011).
[17] Reetz M.T., Becker M.H., Kuhling K.M., Holzwarth A., Time-Resolved IR-Thermographic Detection and Screening of Enantioselectivity in Catalytic Reactions, Angew. Chem. Int. Ed., 37: 2647-2650 (1998).
[18] Silwa W., Koslowski C., “Calixarenes and Resorcinarenes: Synthesis, Properties and Applications”, Wiley-VCH, Verlag,(2009).
[19] Gutsche C.D., “Calixarenes”, R. Soc. Chem, Cambridge, UK,(1989).
[20] Leon S., Leigh D.A., Zerbetto F., The Effect of Guest Inclusion on the Crystal Packing
of p-tert-butylcalix-4-Arenes
, Chem. Eur. J., 4854-4866 (2002).
[22] Boehmer V.,  Calixarene – Makrocyclen Mit (fast) Unbegrenzten Möglichkeiten, Angew. Chem., 107: 785 (1995).
[25] Mizani F., Majdi M., Taghvaei-Ganjali S., Quantitative Monitoring of Cobalt ions by a Co+2 Selective Electrode Based on a calix[4] Arene Derivative, Anal. Bioanal. Electrochem, 4(5): 529-543 (2012).
[26] Hosseini M., Rahimi M., Sadeghi H., Taghvaei-Ganjali S., Abkenar S., Ganjali M.R., Determination of Hg(II) Ions in Water Samples by a Novel Hg(II) Sensor, Based on Calix[4]Arene Derivative, Int. J. Environ. Anal. Chem. (New York, NY [u.a.]: Gordon and Breach), 89(6): 407-422 (2009).
[27] Taghvaei-Ganjali S., Zadmard R., Zeyaei M., Rahnama K., Faridbod F., Ganjali M.R., Synthesis of a New Calix[4]Arene and Its Application in Construction of a Highly Selective Silver Ion-Selective Membrane Electrode, Res. lett. Org. Chem. (New York, NY [u.a.]: Hindawi Publ. Corp.), 1-5 (2009).
[32] Sliwka-Kaszynska M., Jaszczolt K., Hoczyk A., Rachon J., 1,3-Alternate 25,27-dibenzoiloxy-26,28-bis-[3-propyloxy]-calix[4]arene-bonded Silica Gel as a New Type of HPLC Stationary Phase, Talanta, 68: 1560 (2006).
[33] Sokolie T., Menyes U., Roth U., Jira T. J., Separation of Cis- and Trans-Isomers of Thioxanthene and Dibenz[b,e]Oxepin Derivatives on Calixarene- and Resorcinarene-Bonded High-Performance Liquid Chromatography Stationary Phases, Chromatogr. A, 948: 309- (2002).
[35] Ch N.R., Kim M.Y., Kim Y.H., Choe J.-I., Chang S.-K., New Hg2+ Selective Fluoroionophores Derived from p-tert-butylcalix[4]arene-azacrown Ethers, J. Chem. Soc. Perkin Trans., 2: 1193-1196 (2002).
[36] Kim J.S., Shon O.J., Rim J.A., Kim S.K., Yoon J., Molecular Taekowndo” Process via Fluorescence Change, J. Org. Chem., 67: 2348-2351 (2002).
[37] Lee J.Y., Kim S.K., Jung J.H., Kim J.S., Bifunctional Fluorescent Calix [4] Arene Chemosensor for Both a Cation and an Anion, J. Org. Chem., 70: 1463-1466 (2005).
[38] Ludwig R., Fresenius` J., Calixarenes in Analytical and Separation Chemistry, Anal. Chem., 367: 103-128 (2000).
[39] Katz A., Coasta P., Lam A.C.P., Notestein J.M., The First Single-Step Immobilization of a Calix-[4]-Arene Onto the Surface of Silica, J. Chem. Mater., 14: 3364-3368 (2002).
[41] Gubbuk I.H., Hatay I., Coskun A., Ersoz M., Immobilization of Oxime Derivative on Silica Gel for the Preparation of New Adsorbent, J. Hazard. Mater., 172: 1532-1537 (2009).
[42] Huang H., Zhao C., Ji Y., Nie R., Zhou P., Zhang H., Preparation, Characterization and Application of p-tert-butyl-calix[4]arene-sba-15 Mesoporous Silica Molecular Sieves, J. Hazard. Mater., 178: 680-685 (2010).
[43] Notestein J.M., Iglesia E., Katz A., Grafted Metallocalixarenes as Single-Site Surface Organometallic Catalysts, J. Am. Chem. Soc., 126: 16478-16486 (2004).
[44] Cacciapaglia R., Casnati A., Mandolin L., Reinhoudt D.N., Salvio R., Sartori A., Ungaro R., Di-and Trinuclear Zn2+ Complexes of Calix [4] Arene Based Ligands as Catalysts of Acyl and Phosphoryl Transfer Reactions, J. Org. Chem., 70: 624- (2005).
[45] Struck O., Van Duynhoven J.P.M., Verboom W., Harkema S., Reinhoudt D.N., Cavity Effect of Calix[4]Arenes in Electrophilic Aromatic Substitution Reactions, Chem. Commun., 1517-1518 (1996).
[46] You J.-S., Yu  X.-Q., Zhang G.-L., Xiang Q.-X., Lan J.-B., Xie R.-G., Novel Chiral Imidazole Cyclophane Receptors: Synthesis and Enantioselective Recoginition for Amino Acid Derivatives, Chem. Commun., 1816-1817 (2001).
[47] Quintar A., Darbost U., Vocanson F., Pellet-Rostaing S., Lemaire M., Synthesis of New Calix[4]arene Based Chiral Ligands Bearing β-Amino Alcohol Groups and Their Application in Asymmetric Transfer Hydrogenation, Tetrahedron:Asymmetry, 18: 1926-1933 (2007).
[48] Schadel U., Sansone F., Casnati A., Ungaro R., Synthesis of Upper Rim Calix[4]Arene Divalent Glycoclusters via Amide Bondconjugation, Tetrahedron, 61: 1149-1154 (2005).
[49] Sansone F., Dudic M., Donofrio G., Rivetti C., Baldini L., Casnati A., Cellai S., Ungaro R., DNA Condensation and Cell Transfection Properties of Guanidinium Calixarenes Dependence on Macrocycle Lipophilicity, Size, and Conformation, J. Am. Chem. Soc., 128: 14528-14536 (2006).
[50] Dvorak L., Lederer T., Jirku V., Masak J., Novak L., Removal of Aniline, Cyanides and Diphenylguanidine from Industrial Wastewater Using a Full-Scale Moving Bed Biofilm Reactor, Process Biochem, 49: 102-109 (2014).
[51] Sales J.A.A., Faira P.F., Prado A.G.S.,  Airoldi C., Attachment of 2-  Aminomethylpyrridine Molecule onto Grafted Silica Gel Surface and Its Ability in Chelating Cations, Polyhedron, 23: 719-725 (2004).
[52] Gutsche C.D., Iqbal M., p-tert-butylcalix [4]arene, Org. Synth., 8: 75-78 (1993).
[53] Coquiere D., Cadeau H., Rondelez Y., Giorgi M., Reinaud O., Ipso-Chlorosulfonylation of Calixarenes: A Powerful Tool for the Selective Functionalization of the Large Rim, J. Org. Chem., 71: 4059-4065 (2006).
[54] Taghvaei-Ganjali S., Zadmard R., Sabertehrani M., Immobilization of Chlorosulfonyl-Calix[4]Arene onto the Surface of Silica Gel Through the Directly Esterification, Appl. Surf. Sci, 258: 5925-5932 (2012).