Prediction of the Transport Properties (Thermal Conductivity and Viscosity) of Nanofluids Using Artificial Neural Network (ANN) Method

Document Type : Research Article

Authors

Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan, I.R. IRAN

Abstract

In this work, feed-forward back-propagation Artificial Neural Networks (ANNs) have been presented to predict the enhancement of the relative thermal conductivity and viscosity of a wide range of nanofluids with different base fluids and nanoparticles. The thermal conductivity ratio of nanofluids with respect to the base fluids has been modeled using an ANN model. The model considers the effects of the thermal conductivity of the base fluid, the thermal conductivityof nanoparticles, nanoparticle volume fraction percent, temperature, and nanoparticle cluster average size. The total number of experimental data used to design the stated network is 483 from 18 different nanofluids. The (5-18-1) topology has been obtained as the best topology of the ANN model. The results of the AARD% for the train, validation, and test sets of data are 2.6, 2.2, and 2.3, respectively. The viscosity ratio of the nanofluids with respect to the base fluids has been modeled using the other ANN model. The viscosity of the base fluid, density ratio of the base fluids with respect to the nanoparticle, nanoparticle volume fraction percent, temperature, and nanoparticle cluster average size have been selected as the inputs of ANN model. The 510 experimental data have been used to design the stated network. The (5-19-1) topology has been obtained as the best topology of the ANN model. The results of the AARD% for the train, validation, and test sets of data are 2.9, 3.1, and 3.2, respectively. Accordingly, two studied ANN models are in good agreement with experimental data. A comparison between the predictions of the proposed ANN models and those predicted by some traditional models such as Maxwell and Bruggeman models shows that much better agreements can be obtained using the ANN model. This model also can able us to predict the relative thermal conductivity and viscosity of new nanofluids in different conditions.

Keywords

Main Subjects


[1] Ghadimi A., Saidur R., Metselaar, H. A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions, Int. J. Heat Mass Transfer 54: 4051-4068 (2011).      
[2] Paul, G.; Philip, J.; Raj B., Das P.K., Manna I., Synthesis, Characterization, and Thermal Property Measurement of Nano-Al 95 Zn 05 Dispersed Nanofluid Prepared by a Two-Step Process, Int. J. Heat Mass Transfer 54: 3783-3788 (2011).      
[3] Suresh, S.; Venkitaraj, K.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/water Hybrid Nanofluids Using Two Step Method and Its Thermo Physical Properties, Colloid. Surface. A. 388: 41-48 (2011).      
[4] Ding, Y.; Wen, D. Particle Migration in a Flow of Nanoparticle Suspensions, Powder Technol. 149: 84-92 (2005).      
[5] Koo J., Kleinstreuer C., Impact Analysis of Nanoparticle Motion Mechanisms on the Thermal Conductivity of Nanofluids, Int. Commun. Heat Mass Transfer 32: 1111-1118 (2005).      
[6] Wen D., Ding Y., Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels, Microfluidics Nanofluidics 1: 183-189 (2005).      
[7] Lee D., Kim J.-W., Kim B.G., A new Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension, J. Phys. Chem. B 110: 4323-4328 (2006).      
[8] Vadasz P., Heat Conduction in Nanofluid Suspensions, J. Heat Transfer 128: 465-477 (2006).     
[9] Wang B.-X., Zhou L.-P., Peng X.-F., A fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles, Int. J. Heat Mass Transfer 46: 2665-2672 (2003).      
[10] Mansour R.B., Galanis N., Nguyen C.T., Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer With Nanofluids, Appl. Therm. Eng. 27: 240-249 (2007).      
[11] کریمی زاد گوهری، فاطمه ؛ شاهسوند، اکبر ، بررسی عملکرد شبکه عصبی مصنوعی MLP، RBF و ORN در یک کانال افقی همراه با انتقال جرم و انتقال حرارت همزمان، نشریه شیمی و مهندسی شیمی ایران، (2) 35: 151 تا 168 (1395).
[12] ذوقی، محمدجواد؛ گنجی دوست، حسین ؛ مختارانی، نادر؛ آیتی، بیتا، بهینه سازی فرایند تثبیت و جامدسازی سیمانی لجن صنایع آبکاری توسط شبکه عصبی مصنوعی و روش سطح پاسخ، نشریه شیمی و مهندسی شیمی ایران، (2) 34: 97 تا 109 (1394).
[13] ترجمان نژاد، علی؛ یاسم، مهناز، پیش‌بینی حلالیت اکسیژن در حلال های آلی با استفاده از شبکه عصبی مصنوعی، نشریه شیمی و مهندسی شیمی ایران، (1) 33: 49 تا 55 (1393).
[14] حسن آبادی، مرتضی؛ مطهری، سید مهدیا؛ ندری پری، مهدی، طراحی شبکه عصبی برای بهینه سازی اندازه سطح مقطع شیرهای درون چاهی با اندازه‌ی ثابت درچاه هوشمند با الگوریتم پرندگان، نشریه شیمی و مهندسی شیمی ایران، (2) 31: 55 تا 69 (1391).
[15] Yousefi F., Mohammadiyan S., Karimi H., Application of Artificial Neural Network and PCA to Predict the Thermal Conductivities of Nanofluids. Heat Mass Transfer, 52: 2141-2154 (2016).
[16] Yousefi F., Karimi H., Mohammadiyan S., Viscosity of Carbon Nanotube Suspension Using Artificial Neural Networks with Principal Component Analysis. Heat Mass Transfer, 52: 2345-2355 (2016).
[17] Yousefi F., Amoozandeh Z., Statistical Mechanics and Artificial Intelligence to Model the Thermodynamic Properties of Pure and Mixture of Ionic Liquids. Chin. J. Chem. Eng. 24: 1761-1771 (2016).
[18] Zolfaghari H., Yousefi F., Thermodynamic Properties of Lubricant/refrigerant Mixtures Using Statistical Mechanics and Artificial Intelligence. Int. J. Refrig. 80: 130–144 (2017).    
[19] Papari M.M., Yousefi F., Moghadasi J., Karim H., Campo A., Modeling Thermal Conductivity Augmentation of Nanofluids Using Diffusion Neural Networks, Int. J. Therm. Sci., 50: 44-52 (2011).    
[20] Hojjat M., Etemad S.G., Bagheri R., Thibault J., Thermal Conductivity of Non-Newtonian Nanofluids: Experimental Data and Modeling Using Neural Network, Int. J. Heat Mass Transfer, 54: 1017-1023 (2011).   
[21] Yousefi F., Karimi H., Papari M.M., Modeling Viscosity of Nanofluids Using Diffusional Neural Networks, J. Mol. Liq. 175: 85-90 (2012).    
[22] Kurt H., Kayfeci M., Prediction of Thermal Conductivity of Ethylene Glycol–Water Solutions by Using Artificial Neural Networks, Appl. Energy, 86: 2244-2248 (2009).     
[23] Longo G.A., Zilio C., Ceseracciu E., Reggiani, M. Application of Artificial Neural Network (ANN) for the Prediction of Thermal Conductivity of Oxide–Water Nanofluids, Nano Energy,
1
: 290-296 (2012).     
[24] Zhao N., Wen X., Yang J., Li S., Wang Z., Modeling and Prediction of Viscosity of Water-Based Nanofluids by Radial Basis Function Neural Networks, Powder Technol., 281: 173-183 (2015).    
[26] Safamirzaei M., Modarress H., Correlation and Pridicting of Low Pressule Solubility of Gases in [bmim][PF6] by Neural Network Molecular Modeling, Thermochimica  Acta, 545: 125-130 (2012).
[27] Lee S., Choi S.S., Li S., Eastman J., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transfer, 121: 280-289 (1999).     
[28] Xuan Y., Li Q., Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, 21: 58-64 (2000).     
[29] Lee D., Kim J.W., Kim B.G., A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension, J. Phys. Chem. B 110: 4323-4328 (2006).    
[30] Kang H.U., Kim S.H., Oh J.M., Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume, Exp. Heat Transfer 19: 181-191 (2006).    
[31] Wang X., Xu X., Choi S.U., Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transfer 13: 474-480 (1999).    
[32] Das S.K., Putra N., Thiesen P., Roetzel W., Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, J. Heat Transfer, 125: 567-574 (2003).   
[33] Xie H., Wang J., Xi T., Liu Y., Ai F., Wu Q., Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles, J. Appl. Phys., 91: 4568-4572 (2002).   
[35] Chon C.H., Kihm K.D., Lee S.P., Choi S.U., Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement, Appl. Phys. Lett., 87: 3107 (2005).    
[36] Murshed S., Leong K., Yang C., Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids, Int. J. Therm. Scie., 44: 367-373 (2005).    
[37] Liu M.S., Lin M.C.C., Tsai C., Wang C.C., Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method, Int. J. Heat Mass Transfer, 49: 3028-3033 (2006).    
[38] Li C.H., Peterson G., The Effect of Particle Size on the Effective Thermal Conductivity of Al2O3-Water Nanofluids, J. Appl. Phys., 101: 44312 (2007).    
[39] Yoo D.H., Hong K., Yang H.S., Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids, Thermochim. Acta, 455: 66-69 (2007).    
[41] Murshed S., Leong K., Yang C., Investigations of Thermal Conductivity and Viscosity of Nanofluids, Int.l J. Therm. Scie., 47: 560-568 (2008).
[42] Anoop K., Sundararajan T., Das S.K., Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region, Int. J. Heat Mass Transfer, 52: 2189-2195 (2009). 
[43] Duangthongsuk W., Wongwises S., Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids, Exp. Therm Fluid Sci., 33: 706-714 (2009).
[44] Turgut A., Tavman I., Chirtoc M., Schuchmann H., Sauter C., Tavman S., Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids, Int. J. Thermophys., 30: 1213-1226 (2009).  
[45] Chandrasekar M., Suresh S., Bose A.C., Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid, Exp. Therm Fluid Sci., 34: 210-216 (2010). 
[47] Lee S.W., Park S.D., Kang S., Bang I.C., Kim J.H., Investigation of Viscosity and Thermal Conductivity of SiC Nanofluids for Heat Transfer Applications, Int. J. Heat Mass Transfer, 54: 433-438 (2011).
[48] Pastoriza-Gallego M.J., Lugo L., Legido J.L., Piñeiro M.M., Thermal Conductivity and Viscosity Measurements of Ethylene Glycol-Based Al2O3 Nanofluids, Nanoscale Res. Lett., 6: 1-11 (2011).
[49] Wen D., Ding Y., Formulation of Nanofluids for Natural Convective Heat Transfer Applications, Int. J. Heat Fluid Flow, 26: 855-864 (2005).   
[50] Eastman J.A., Choi S., Li S., Yu W., Thompson L., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett. 78: 718-720 (2001).  
[51] Hong T.K., Yang H.S., Choi C., Study of the Enhanced Thermal Conductivity of Fe Nanofluids, J. Appl. Phys., 97: 064311 (2005).  
[52] Chen H., Ding Y., He Y., Tan C., Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids, Chem. Phys. Lett., 444: 333-337 (2007).  
[53] Chen H., Ding Y., Lapkin A., Fan X., Rheological Behaviour of Ethylene Glycol-Titanate Nanotube Nanofluids, J. Nanopart. Res., 11: 1513-1520 (2009).  
[54] Gharagheizi F., QSPR Analysis for Intrinsic Viscosity of Polymer Solutions by Means of GA-MLR and RBFNN, Comput. Mater. Sci., 40: 159-167 (2007).  
[55] Giuliani G., Kumar S., Zazzini P., Polonara F., Vapor Pressure and Gas Phase PVT Data and Correlation for 1, 1, 1-Trifluoroethane (R143a), J. Chem. Eng. Data 40: 903-908 (1995). 
[56] Li J., Tillner-Roth R., Sato H., Watanabe K., An Equation of State for 1, 1, 1-Trifluoroethane (R-143a), Int. J. Thermophys. 20: 1639-1651 (1999).
[57] Amato F., González-Hernández J.L., Havel J., Artificial Neural Networks Combined with Experimental Design: A “Soft” Approach for Chemical Kinetics, Talanta, 93: 72-78 (2012). 
[58] Vasileva-Stojanovska T., Vasileva M., Malinovski T., Trajkovik V., An ANFIS Model of Quality of Experience Prediction in Education, Appl. Soft Comput. 34: 129-138 (2015).
[59] Prasher R., Song D., Wang J., Phelan P., Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications, Appl. Phys. Lett. 89: 133108 (2006). 
[60] Namburu P.K., Kulkarni D.P., Misra D., Das D.K., Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture, Exp. Therm Fluid Sci., 32: 397-402 (2007).
[61] Nguyen C., Desgranges F., Roy G., Galanis N., Maré T., Boucher S., Mintsa H.A., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon, Int. J. Heat Fluid Flow 28: 1492-1506 (2007).
[62] Tavman I., Turgut A., Chirtoc M., Schuchmann H., Tavman S., Experimental Investigation of Viscosity and Thermal Conductivity of Suspensions Containing Nanosized Ceramic Particles, Arch. Mater. Sci. 34: 99-104 (2008).