Theoretical Study of Interaction between Glycosyl Coumarin Inhibitors and Carbonic Anhydras Enzyme II & XII

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Physics and Chemistry, Al-Zahra University, Tehran, I.R. IRAN

Abstract

Carbonic Anhydrase (CA) is an Enzyme having Zinc metal that catalyzes the reversible reaction of conversion of carbon dioxide to Bicarbonate. This Enzyme is vital for Biological systems such as the human body. In this research, the inhibitory mechanism of action of coumarin and some of its sugar derivatives with carbon anhydrase XII & II have been investigated. The most stable conformer of these Inhibitories was selected for calculations and their interaction with these two Enzymes was investigated. All calculations have been done by density functional theory (DFT) in the level of B_3LYP with basic set 6-31G* and with Minnesota function M06 with basic set 6-31+G*. In the following the thermodynamic variables of such reaction 〖∆S〗_(r×n)°, 〖∆H〗_(r×n)°, 〖∆G〗_(r×n)° have been calculated. Results show that the reaction between this family of Inhibitories and Carbonic Anhydrase Enzyme is not of the type of direct and syndetic but the Enzyme inactivates with the spacing effect.

Keywords

Main Subjects


[1] Sahebjamee H., Yaghmaei P., Abdolmaleki P., Foroumadi A. R., Quantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 32(2): 19-29 (2013).
[2] Supuran C.T., Carbonic Anhydrase Inhibition with Natural Products: Novel Chemotypes and Inhibition Mechanisms, Molecular Diversity, 15(2): 305-316 (2011).
[3] Supuran C.T., Carbonic Anhydrases: Novel Therapeutic Applications for Inhibitors and Activators, Nature Reviews Drug Discovery, 7(2): 168-181 (2008).
[4] Moya A., Tambutté S., Bertucci A., Tambutté E., Lotto S., Vullo D., Supuran C.T., Allemand D., Zoccola D., Carbonic Anhydrase in the Scleractinian Coral Stylophora Pistillata Characterization, Localization, and Role in Biomineralization, Journal of Biological Chemistry, 283(37): 25475-25484 (2008).
[5] Elleuche S., Pöggeler S., Carbonic Anhydrases in Fungi, Microbiology, 156(1): 23-29 (2010).
[6] Nishimori I., Onishi S., Takeuchi H., Supuran C.T., The α and β Classes Carbonic Anhydrases from Helicobacter Pylori as Novel Drug Targets, Current pharmaceutical design, 14(7): 622-630 (2008).
[7] Švastová E., Hulı́ková A., Rafajová M., Zat'ovičová M., Gibadulinová A., Casini A., Cecchi A., Scozzafava A., Supuran C.T., Pastorek J., Pastoreková S., Hypoxia Activates the Capacity of Tumor‐Associated Carbonic Anhydrase IX to Acidify Extracellular pH, FEBS Letters, 577(3): 439-445 (2004).
[8] Ebbesen P., Pettersen E.O., Gorr T.A., Jobst G., Williams K., Kieninger J., Wenger R.H., Pastorekova S., Dubois L., Lambin P., Wouters B.G., Taking Advantage of Tumor Cell Adaptations to Hypoxia for Developing New Tumor Markers and Treatment Strategies, Journal of Enzyme Inhibition and Medicinal Chemistry, 24(sup1): 1-39 (2009).
[9] Supuran C.T., Scozzafava A., Casini A., Carbonic Anhydrase Inhibitors, Medicinal Research Reviews, 23(2): 146-189 (2003).
[10] Supuran C.T., Carbonic Anhydrases-An Overview, Current Pharmaceutical Design, 14(7): 603-614 (2008).
[11] Erdemir F., Celepci D.B., Aktaş A., Taslimi P., Gök Y., Karabıyık H., Gülçin I., 2-Hydroxyethyl Substituted NHC Precursors: Synthesis, Characterization, Crystal Structure and Carbonic Anhydrase, Α-Glycosidase, Butyrylcholinesterase, and Acetylcholinesterase Inhibitory Properties, Journal of Molecular Structure, 1155: 797-806 (2018).
[13] Xu Y., Feng L., Jeffrey P.D., Shi Y., Morel F.M., Structure and Metal Exchange in the Cadmium Carbonic Anhydrase of Marine Diatoms, Nature, 452(7183): 56-61 (2008).
[15] Zimmerman S.A., Ferry J.G., Supuran C.T., Inhibition of the Archaeal β-Class (Cab) and γ-Class (Cam) Carbonic Anhydrases, Current Topics in Medicinal Chemistry, 7(9): 901-908 (2007).
[16] Monti S.M., Supuran C.T., De Simone G., Anticancer Carbonic Anhydrase Inhibitors: a Patent Review (2008–2013), Expert Opinion on Therapeutic Patents, 23(6): 737-749 (2013).
[18] Forsman C., Behravan G., Osterman A., Jonsson B.H., Production of Active Human Carbonic Anhydrase ll in E. Coli, Acta Chemica Scandinavica, 42: 314-318 (1988).
[20] Venters R.A., Farmer II B.T., Fierke C.A., Spicer L.D., Characterizing the Use of Perdeuteration in NMR Studies of Large Proteins: 13 C, 15 N and 1 H Assignments of Human Carbonic Anhydrase II, Journal of Molecular Biology, 264(5): 1101-1116 (1996).
[21] Supuran C.T., Carbonic Anhydrase Inhibitors: an Editorial, Expert Opinion on Therapeutic Patents, 23(6): 677-679 (2013).
[22] Supuran C.T., Maresca A., Gregáň F., Three New Aromatic Sulfonamide Inhibitors of Carbonic Anhydrases I, II, IV and XII, Journal of Enzyme Inhibition and Medicinal Chemistry, 28(2): 289-293 (2013).
[23] Supuran C.T., Carbonic Anhydrase Inhibitors and Activators for Novel Therapeutic Applications, Future Medicinal Chemistry, 3(9): 1165-1180 (2011).
[24] Scozzafava A., Supuran C.T., Conway J., "Development of Sulfonamide Carbonic Anhydrase Inhibitors", CRC Press, Florida, (2004).
[25]  (a) Thiry A., Dogne J., Masereel B., Supuran C.T., Targeting Tumor-Associated Carbonic Anhydrase IX in Cancer Therapy, Trends in Pharmacological Sciences,  27(11): 566-573 (2006).
      (b) Kumar R., Bua S., Ram S., Del Prete S., Benzenesulfonamide Bearing Imidazothiadiazole and Thiazolotriazole Scaffolds as Potent Tumor Associated Human Carbonic Anhydrase IX
and XII Inhibitors
, Bioorganic & Medicinal Chemistry, 25(3): 1286-1293 (2017).
      (c) Chandak N., Ceruso M., Supuran C.T., Sharma P.K., Novel Sulfonamide Bearing Coumarin Scaffolds as Selective Inhibitors of Tumor Associated Carbonic Anhydrase Isoforms IX and XII, Bioorganic & Medicinal Chemistry, 24(13): 2882–2886 (2016).   
[26]  Ghiasi M., Kamalinahad S., Arabieh M., Zahedi M., Carbonic Anhydrase Inhibitors: a Quantum Mechanical Study of Interaction Between Some Antiepileptic Drugs with Active Center of Carbonic Anhydrase Enzyme, Computational and Theoretical Chemistry, 992: 59-69 (2012).
[28]   Ghiasi M., Oskouie A., Saeidian H., Dynamic Stereochemistry of Topiramate (Anticonvulsant Drug) in Solution: Theoretical Approaches and Experimental Validation, Carbohydrate Research, 348: 47-54 (2012).
[30] Bonneau A., Maresca A., Winum J.Y., Supuran C.T., Metronidazole-Coumarin Conjugates and 3-Cyano-7-Hydroxy-Coumarin Act as Isoform-Selective Carbonic Anhydrase Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, 28(2): 397-401 (2013).
[31] Touisni N., Maresca A., McDonald P.C., Lou Y., Scozzafava A., Dedhar S., Winum J.Y., Supuran C.T., Glycosyl Coumarin Carbonic Anhydrase IX and XII Inhibitors Strongly Attenuate the Growth of Primary Breast Tumors, Journal of Medicinal Chemistry, 54(24): 8271-8277 (2011).
[32] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P.,  Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J.,  Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian, Inc., Wallingford CT. (2009).
[34] Ghiasi M., Taheri M., Zahedi M., Thermodynamic Study of Proton Transfer in Carbonic Anhydrase/Activator Omplex:A Quantum Mechanical Approach, Computational and Theoretical Chemistry, 1022: 121-129 (2013).
[35] Ghiasi M., Kamalinahad S., Zahedi M., Complexation of Nanoscale Enzyme Inhibitor with Carbonic Anhydrase Active Center: A Quantum Mechanical Approach, Journal of Structural Chemistry, 55(8): 1574–1586 (2014).
[36]   Navarrete M., Rangel C., Corchado J.C., Espinosa-Garcia J., Trapping of the OH Radical by α-Tocopherol: A Theoretical Study, The Journal of Physical Chemistry A, 109(21): 4777-4784 (2005).
[37]   Chandra A.K., Uchimaru T., The OH Bond Dissociation Energies of Substituted Phenols and Proton Affinities of Substituted Phenoxide Ions: A DFT Study, International Journal of Molecular Sciences, 3(4): 407-422 (2002).
[38]   Zhang H.Y., Ji H.F., S-H Proton Dissociation Enthalpies of Thiophenolic Cation Radicals: A DFT Study, Journal of Molecular Structure: Theochem., 663(1-3): 167–174 (2003).
[39] Whittington D.A., Waheed A., Ulmasov B., Shah G.N., Grubb J.H., Sly W.S., Christianson D.W., Crystal Structure of the Dimeric Extracellular Domain of Human Carbonic Anhydrase XII, a Bitopic Membrane Protein Overexpressed in Certain Cancer Tumor Cells, Proceedings of the National Academy of Sciences, 98(17): 9545-9550 (2001).
[41] Tafazzoli M., Ghiasi M., Conformational Study of Anomeric Center in Some Carbohydrate Derivatives, Computational and Theoretical Chemistry, 814(1-3): 127-130 (2007).
[42] Barone V., Cossi M., Tomasi J., Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model, Journal of Computational Chemistry, 19(4): 404–417 (1998).