Application of Polymeric Membrane in Water Desalination

Document Type : Review Article

Authors

Iran Polymer and Petrochemical Institute, Tehran, I.R. IRAN

Abstract

Membrane processes are among the common methods for water sweetening and desalination, however, due to the cost and energy consumption, membrane processes are more suitable and have more practical applications. Designing of membranes in different shapes and dimensions, performing of separation process at room temperature, minimum consumption of chemical materials including solvents, and other additives are among the advantages of membrane process in respect to classical and common separation processes. Different membrane processes are used for water sweetening including reverse osmosis, electrodialysis, microfiltration, ultrafiltration, and nanofiltration membrane processes in which the reverse osmosis and electrodialysis methods are more important. Polymers are commonly used as membranes for the water sweetening industry, and due to their versatile structures and properties have a specific position in such a way that their applications are growing steadily. The most suitable and efficient polymeric membranes applied in the country are cellulose acetate, polyamide composite membranes, polysulfone, polyethylene, polypropylene, polycarbonate, polytetrafluoroethylene, polyvinylidene fluoride, and polydimethylsiloxane. There are different methods for improving the efficiency of polymeric membranes in the water desalination process in which preparation of copolymers and polymer blends, chemical modifications on the polymeric structure or their chemical functionalization, preparation of composites, and physical or chemical modifications on the surface of some polymers are more important that should be resulted in a suitable collection of physical, hydrophobic, chemical, thermal, and hydrolytic stability of the polymer and also led to remarkable flux and salt rejection. In this article, different membrane processes, and polymers that are applying in this industry is briefly introduced.

Keywords

Main Subjects


[1] Singh R., Worldwide Water Crisis, J. Membr. Sci, 313: 353–354 (2008).
[2] Riley P. L., Milstead C. E., Lloyd A. L., Seroy, M. W., Tagami M., Spiral-Wound Thin-Film Composite Membrane Systems for Brackish and Seawater Desalination by Reverse Osmosis, Desalination, 23: 331–355 (1977).
[3] Mallevialle J., Odendaal P. E., Wiesner M. R.,"Water Treatment Membrane Processes; American Water Works Association", McGraw-Hill, New York, (1996).
[4] Service R. F., Desalination Freshens Up. Sci. (New York, NY), Science, 313: 1088-1090 (2006).
[5] Kalogirou S. A., Seawater Desalination Using Renewable Energy Sources, Prog. Energy Combust. Sci., 31: 242–281 (2005).
[6] Jacob C., Seawater Desalination: Boron Removal by Ion Exchange Technology, Desalination, 205: 47–52 (2007).
[7] Bartman A. R., Zhu A., Christofides P. D., Cohen Y., Minimizing Energy Consumption in Reverse Osmosis Membrane Desalination Using Optimization-Based Control, J. Process Control., 20: 1261–1269 (2010).
[8] Cadotte J. E., Evolution of Composite Reverse Osmosis Membranes,ACS Symposium Series, 269: 273–294 (1985).
[10] Van Reis R., Zydney A., Bioprocess Membrane Technology, J. Membr. Sci., 297: 16–50 (2007).
[11] Amy G., Ghaffour N., Li Z., Francis L., Linares R. V., Missimer T., Lattemann S., Membrane-Based Seawater Desalination: Present and Future Prospects, Desalination, 401: 16–21 (2017).
[12] Greenlee LF., Lawler DF., Freeman BD., Marrot Benoi., Moulin P., Reverse Osmosis Desalination: Water Sources, Technology, and Today's Challenges, Water Research, 43(9): 2317-2348 (2009).
[13] Fritzmann C., Löwenberg J., Wintgens T., Melin T., State-of-the-Art of Reverse Osmosis Desalination, Desalination, 216: 1–76 (2007).
[14] Belfort G., "Synthetic Membrane Process: Fundamentals and Water Applications", Academic Press INC, New York )2012(.
[15] Wang M., Wang K., Jia Y., Ren Q., The Reclamation of Brine Generated from Desalination Process by Bipolar Membrane Electrodialysis, J. Membr. Sci., 452: 54–61 (2014).
[16] Porter M. C., Handbook of Industrial Membrane Technology, NJ (USA), Noyes Publications, Park Ridge, (1989). 
[17] Geisler P., Krumm W., Peters T. A., Reduction of the Energy Demand for Seawater RO with the Pressure Exchange Systems PES, Desalination, 135: 205–210 (2001).
[18] Kurihara M., Harumiya N., Kanamaru N., Tonomura T., Nakasatomi M., Development of the PEC-1000 Composite Membrane for Single-Stage Seawater Desalination and the Concentration of Dilute Aqueous Solutions Containing Valuable Materials, Desalination, 38: 449–460 (1981).
[19] Uemura T., Himeshima Y., Kurihara M., Interfacially Synthesized Reverse Osmosis Membrane. US Patent 4761234, (1988).
[20] Hofs B., Ogier J., Vries D., Beerendonk E. F., Cornelissen E. R., Comparison of Ceramic and Polymeric Membrane Permeability and Fouling Using Surface Water, Sep. Purif. Technol., 79: 365–374 (2011).
[21] Christmann J. B. P., Krätz L. J., Bart H.-J., Novel Polymer Film Heat Exchangers for Seawater Desalination, Desalin. Water Treat, 21: 162–174 (2010).
[22] Dreiser C., "Polymer Film Heat Exchanger for Seawater Desalination : Prevention and Cleaning of Fouling Deposits", In: Proceedings of International Conference on Heat Exchanger Fouling and Cleaning X, 2013: 296–301 (2013).
[23] Elimelech M., Phillip W.A., The Future of Seawater Desalination: Energy, Technology, and the Environment, Science, Amer. Assoc. Adv. Sci., 333: 712–717 (2011).
[24] Geise G. M., Park H. B., Sagle A. C., Freeman B. D., McGrath J. E., Water Permeability
and Water/salt Selectivity Tradeoff in Polymers for Desalination
, J. Membr. Sci., 369: 130–138 (2011).
[25] Marjani A., Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes, Iran. J. Chem. Chem. Eng. (IJCCE),  36: 139–149 (2017).
[28] Luo F., Wang Y., Jiang C., Wu B., Feng H., Xu T., A Power Free Electrodialysis (PFED) for Desalination, Desalination, 404: 138–146 (2017).
[29] Manohar M., Das A. K., Shahi V. K., Alternative Preparative Route for Efficient and Stable Anion-Exchange Membrane for Water Desalination by Electrodialysis, Desalination, 413: 101–108 (2017 ).
[30] Baker R. W., "Membrane Technology and Applications", John Wiley & Sons, Menlo Park, California USA (2004).
[31] Bernardes A.M., Rodrigues M.A.S., Electrodialysis and Water Reuse. Electrodialysis Water Reuse Nov. Approaches, Berlin, Heidelberg, 63–75 (2014).
[32] Choi S. Y., Yu J. W., Kweon J. H., Electrodialysis for Desalination of Brackish Groundwater in Coastal Areas of Korea, Desalin. Water Treat., 51: 6230–6237 (2013).
[33] Ghyselbrecht K., Huygebaert M., Van der Bruggen B., Ballet R., Meesschaert B., Pinoy L., Desalination of an Industrial Saline Water with Conventional and Bipolar Membrane Electrodialysis, Desalination, 318: 9–18 (2013).
[34] Lopez A. M., Williams M., Paiva M., Demydov D., Do T. D., Fairey J. L., Lin Y. J., Hestekin J. A, Potential of Electrodialytic Techniques in Brackish Desalination and Recovery of Industrial Process Water for Reuse, Desalination, 409: 108–114 (2017).
[35] Sobana S., Panda R. C., Identification, Modelling, and Control of Continuous Reverse Osmosis Desalination System: A Review, Sep. Sci. Technol., 46: 551–560 (2011).
[36] Vivek K. N. Singh., Reverse Osmosis Water Purifier, US Patent20170129795 A1 (2016)
[37] Glater J., Hong S., Elimelech M., The Search for a Chlorine-Resistant Reverse Osmosis Membrane, Desalination,95: 325–345 (1994).
[38] Petersen R. J., Composite Reverse Osmosis and Nanofiltration Membranes, J. Membr. Sci., 83: 81–150 (1993). 
[39] Ridgway H. F., Safarik J., Biofouling of Reverse Osmosis Membranes, In Biofouling and Biocorrosion in Industrial Water Systems, 81–111 (1991).
[40] Riley R. L., Lonsdale H. K., Lyons C. R., Merten U., Preparation of Ultrathin Reverse Osmosis Membranes and the Attainment of Theoretical Salt Rejection, J. Appl. Polym. Sci., 11: 2143–2158 (1967).
[42] Winston Ho W. S., Sirkar K. K., "Membrane Handbook", New York (2012).
[43] Noble R. D., Richard D., Stern S. A.,Membrane Separations Technology : Principles and Applications, 2: 718 (1995).
[44] Li N.N., Recent Developments in Separation Science, Chem. Rubber Company, 2: 292 (1972).
[45] Matsuura T., Progress in Membrane Science and Technology for Seawater Desalination—A Review, Desalination, 134: 47–54 (2001).
[49] Loeb S., "Sea Water Demineralization by Means of a Semipermeable Membrane: Progress Report" January, Contrib. Resour. Cent. Univ. Los Angeles. 66: 66 (1962).
[50] Lonsdale H. K., The Growth of Membrane Technology, J. Membr. Sci., 10: 81–181 (1982).
[51] Endoh R., Tanaka T., Kurihara M., Ikeda K., New Polymeric Materials for Reverse Osmosis Membranes, Desalination, 21: 35–44 (1977).
[52] Jonsson G., "Influence of Pressure on the Compaction of Asymmetric Cellulose Acetate Membranes", In: Proceedings of the 6th International Symposium in Fresh Water from Sea, V: 203–212 (1978).
[54] Lonsdale H. K., Merten U., Riley R. L., Transport Properties of Cellulose Acetate Osmotic Membranes, J. Appl. Polym. Sci., 9: 1341–1362 (1965).
[55] Vos K. D., Burris F. O., Riley R. L., Kinetic Study of the Hydrolysis of Cellulose Acetate in the pH Range of 2–10, J. Appl. Polym. Sci, 10: 825–832 (1966).
[56] Sheppard J. D., Thomas D. G., Effect of High Axial Velocity on Performance of Cellulose Acetate Hyperfiltration Membranes, Desalination, 8: 1–12 (1970).
[57] Rosenbaum S., Mahon H. I., Cotton O., Permeation of Water and Sodium Chloride through Cellulose Acetate, J. Appl. Polym. Sci., 11: 2041–2065 (1967).
[58] Matsuura T., Pageau L., Sourirajan S., Reverse Osmosis Separation of Inorganic Solutes in Aqueous Solutions Using Porous Cellulose Acetate Membranes, J. Appl. Polym. Sci., 19: 179–198 (1975).
[60] Yip N. Y., Tiraferri A., Phillip W. A., Schiffman J. D., Elimelech M., High Performance Thin-Film Composite Forward Osmosis Membrane, Environ. Sci. Technol., 44: 3812–3818 (2010).
[62] Cadotte J. E., Petersen R. J., Larson R. E., Erickson E. E., A New Thin-Film Composite Seawater Reverse Osmosis Membrane, Desalination, 32: 25–31 (1980).
[63] Gorgojo P., Jimenez-Solomon M. F., Livingston A. G., Polyamide Thin Film Composite Membranes on Cross-Linked Polyimide Supports: Improvement  of RO Performance via Activating Solvent, Desalination344: 181-188 (2014).
[64] Lau W. J., Gray S., Matsuura T., Emadzadeh D., Paul Chen J., Ismail A. F, A Review on Polyamide Thin Film Nanocomposite (TFN) Membranes: History, Applications, Challenges and Approaches, Water Res., 80: 306–324 (2015).
[65] Ni L., Meng J., Li X., Zhang Y., Surface Coating on the Polyamide TFC RO Membrane for Chlorine Resistance and Antifouling Performance Improvement, J. Membr. Sci., 451: 205-215 (2014).
[66] Rabiee A., Mehdipour-Ataei S., Physical and Mechanical Properties of Sulfonated Aromatic Copolyimide Membranes, E-Polymers, 110: 1–10 (2009).
[67] Jagur-Grodzinski J.,Jagur-Grodzinski J.,Nanostructured Polyolefins / Clay Composites: Role of the Molecular Interaction at the Interface, Polym. Adv. Technol, 17: 395–418 (2006).
[68] Mehdipour-Ataei S., Novel Thermally Stable Poly(sulfone Ether Ester Imide)s, Eur. Polym. J., 41: 91–96 (2005).
[69] Herbert H. H., William R. J., Permselective, Aromatic, Nitrogen-Containing Polymeric Membranes, US Patent 3,567,632, (1971).
[70] Zhao H., Qiu S., Wu L., Zhang L., Chen H., Gao C., Improving the Performance of Polyamide Reverse Osmosis Membrane by Incorporation of Modified Multi-Walled Carbon Nanotubes, J. Membr. Sci., 450: 249–256 (2014).
[71] Abbasi F., Mehdipour-Ataei S., Khademinejad S., Novel Type of Highly Soluble and Thermally Stable Poly(sulfone Ether Imide)s, Des. Monomers Polym., 18: 789–798 (2015) .
[72] Abbasi F., Mehdipour-Ataei S., Tabatabaei-Yazdi Z., Babanzadeh S., Abouzari-Lotf E., Effect of Sepiolite Nanoparticles on the Properties of Novel Poly(sulfone Ether Imide), Polym. Adv. Technol., 28: 404–410 (2017).
[73] Mehdipour-Ataei S., Sarrafi Y., Hatami M., Novel Thermally Stable Polyimides Based on Flexible Diamine: Synthesis, Characterization, and Properties, Eur. Polym. J., 40: 2009–2015 (2004).
[74] Oroujzadeh M., Mehdipour-Ataei S., Anisotropic Membranes from Electrospun Mats of Sulfonated/nonsulfonated Poly (Ether Ketone)s Containing Ion-Rich Paths as Proton Exchange Membranes, Int. J. Polym. Mater. Polym. Biomater., 65: 330–336 (2016).
[77] Oroujzadeh M., Mehdipour-Ataei S., Esfandeh M., Preparation and Properties of Novel Sulfonated Poly(arylene Ether Ketone) Random Copolymers for Polymer Electrolyte Membrane Fuel Cells, Eur. Polym. J., 49: 1673–1681 (2013).
[79] Khodami S., Babanzadeh S., Mehdipour-Ataei S., "Preparation of New Sulfonated Polysulfone Membrane for Desalination Application", 25th Iranian Seminar of Organic Chemistry, Iran Science and Technology University, (2017).
[80] Nahvi R., Babanzadeh S., Mehdipour-Ataei S., Khodami S., "Synthesis and Investigation of Poly(aryl ether sulfide) sulfone Membrane for Water Desalination", The First Congress on Water, Soil and Environmental Sciences, Shahid Beheshti University, (2018).       
[81] Oroujzadeh M., Mehdipour-Ataei S., Esfandeh M., New Proton Exchange Membranes Based on Sulfonated Poly(Arylene Ether Sulfone) Copolymers: Effect of Chain Structure on Methanol Crossover, Int. J. Polym. Mater. Polym. Biomater., 64: 279–286 (2015) .
[82] Zhu W.-P., Sun S.-P., Gao J., Fu F.-J., Chung T.-S, Dual-Layer Polybenzimidazole/polyethersulfone (PBI/PES) Nanofiltration (NF) Hollow Fiber Membranes for Heavy Metals Removal from Wastewater, J. Membr. Sci., 456: 117–127 (2014).
[83] Chen N.-J., Chang K.-C., Cheng S.-H., Tsai W.-C., Filteration Material for Desalination, US Patent 20130168312 A1, (2012). 
[84] Teoh M. M., Wang K. Y., Bonyadi S., Yang Q., Chung T.-S., Emerging Membrane Technologies Developed in NUS for Water Reuse and Desalination Applications: Membrane Distillation
and Forward Osmosis
, Membr. Water Treat., 2: 1–24 (2011).
[85] Senoo M., Hara S., Ozawa S., Permselective Polymeric Membrane Prepared from Polybenzimidazoles, US Patent 3,951,920, (1976).
[86] Kumar S., Ahlawat W., Bhanjana G., Heydarifard S., Nazhad M. M., Dilbaghi N., Nanotechnology-Based Water Treatment Strategies, J. Nano Sci. Nano Technol. American Scientific, 14: 1838–1858 (2014).
[87] Ataei S. M., Babanzadeh S., Bahri-laleh N., Novel Thermally Stable Poly(Sulfone Ether Ester Amide)S with Improved Solubility, E-Polymers, 46: 1–11 (2006).
[88] Kimura S., Sourirajan S., Mass Transfer Coefficients for Use in Reverse Osmosis Process Design, Ind. Eng. Chem. Process Des. Dev., 7: 539–547 (1968).
[89] Medhi M., Patil A. S., Halhalli M. R., Choubey A., Wadgaonkar P. P., Maldar N. N., Novel Poly (Amide-hydrazide) S and Copoly (Amide-hydrazide)S from bis‐(4‐aminobenzyl) Hydrazide and Aromatic Diacid Chlorides: Synthesis and Characterization, J. Appl. Polym. Sci., 116: 2441–2450 (2010).
[90] Matsuura T., Blais P., Pageau L., Sourirajan S., Parameters for Prediction of Reverse Osmosis Performance of Aromatic Polyamide-Hydrazide (1:1) Copolymer Membranes, Ind. Eng. Chem. Process Des. Dev., 16: 510–516 (1977).
[91] Han R., Zhang S., Hu, L.; Guan, S.; Jian, X. Preparation and Characterization of Thermally Stable Poly (Piperazine amide)/PPBES Composite Nanofiltration Membrane. J. Membr. Sci., 70: 91–96 (2011).
[92] Jahanshahi M., Rahimpour A., Peyravi M., Developing Thin Film Composite Poly (Piperazine-Amide) and Poly (Vinyl-Alcohol) Nanofiltration Membranes, Desalination, 257: 129–136 (2010).
[93] Gaeta S. N., Petrocchi E., Negri E., Drioli E., Chlorine Resistance of Polypiperazineamide Membranes and Modules, Desalination, 83: 383-387 (1991).
[94] Cadotte J. E., King R. S., Majerle R. J., Petersen R. J., Interfacial Synthesis in the Preparation of Reverse Osmosis Membranes, J. Macromol. Sci., 15: 727–755 (1981).
[95] Munari S., Bottino A., Capannelli G., Moretti P., Bon P. P., Preparation and Characterization of Polysulfone-Polyvinylpyrrolidone Based Membranes, Desalination, 70: 265–275 (1988).
[96] Riley R. L., Lyons C. R., Merten U., Transport Properties of Polyvinylpyrrolidone-Polyisocyanate Interpolymer Membranes, Desalination, 8: 177–193 (1970).
[97] Sims K. J., Spiral Wound Pressure Membrane Module, US Patent 4,735,717. (1988).
[98] Ito Y.; Kotera, S.; Inaba, M.; Kono, K.; Imanishi, Y. Control of Pore Size of Polycarbonate Membrane with Straight Pores by Poly (Acrylic Acid) Grafts. Polymer (Guildf). 31: 2157–2161 (1990).
[99] Tung K.-L., Chuang C.-J., Effect of Pore Morphology on Fluid Flow and Particle Deposition on a Track-Etched Polycarbonate Membrane, Desalination, 146: 129–134 (2002).
[100] Miao J., Chen G., Gao C., A Novel Kind of Amphoteric Composite Nanofiltration Membrane Prepared from Sulfated Chitosan (SCS), Desalination, 181: 173–183 (2005).
[103] Nunes S. P., Maab H., Francis L.,Membrane for Water Purification, US Patent 20130206694A1, (2013).
[104] Maab H., Nunes S. P., Porous Polyoxadiazole Membranes for Harsh Environment, J. Membr. Sci., 445: 127–134 (2013).
[105] Duong P. H. H., Chisca S., Hong P.-Y., Cheng H., Nunes S. P., Chung T.-S., Hydroxyl Functionalized Polytriazole-Co-Polyoxadiazole as Substrates for Forward Osmosis Membranes, ACS Appl. Mater. Interfaces, 7: 3960–3973 (2015).
[106] Bechhold H., Kolloidstudien Mit Der Filtrationsmethode, Zeitschrift für Elektrochemie und Angew, Phys. Chemie., 13: 527–533 (1907).
[107] Loeb S., Sourirajan S., Sea Water Demineralization by Means of an Osmotic Membrane, Adv. Chem., 38:117–132 (1963).
[108] Michaels A. S., High Flow Membrane, US Patent 3,615,024.(1971).
[109] Yang W., Cicek N., Ilg J., State-of-the-Art of Membrane Bioreactors:Worldwide Research and Commercial Applications in North America, J. Membr. Sci., 270: 201–211 (2006).