The Synthesis of Allylic Esters via Direct Allylic C–H Bonds Oxidation of Cycloolefins in the Presence of Copper Oxide Nanoparticles and Nanoporous Silica

Document Type : Research Article

Authors

Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Sciences, University of Kurdistan, Sanandaj, I.R. IRAN

Abstract

Copper Oxide(CuO) nanoparticles and nanoporous silica such as MCM-41 and SBA-15 were synthesized and characterized by Fourier Transform InfraRed (FT-IR) spectroscopy, X-Ray Diffraction (XRD), and Sscanning Electron Microscopy (SEM). The synthesized copper oxide nanocatalyst was applied in allylic oxidation of cycloolefinsvia C–H bonds activation by tert-butyl-p-nitrobenzoperoxoate as oxidant and in the presence of nanoporous silica as additive. Allylic esters were obtained in good yields (up to 90%) and reasonable reaction times. Also, the recovered catalyst was applicable in the allylic oxidation reaction for four times without loss in catalytic reactivity and yield. The structure of tert-butyl-p-nitrobenzoperoxoate and allylic esters were characterized by 1HNMR, and 13CNMR spectroscopy

Keywords

Main Subjects


[3] Kharasch M., Sosnovsky G., Yang N., Reactions of t-Butyl Peresters. I. The Reaction of Peresters with Olefins1, J. Am. Chem. Soc., 81: 5819-5824 (1959).
[5] Francis M., Grant P., Low K., Weavers R., Diterpene Chemistry—VI: SeO2/H2O2 Oxidations of Exocyclic Olefins, Tetrahedron, 32: 95-101 (1976).
[6] Iwaoka M., Tomoda S., Catalytic Conversion of Alkenes into Allylic Ethers and Esters Using Diselenides Having Internal Tertiary Amines, J. Chem. Soc., Chem. Commun.: 1165-1167 (1992).
[7] Rapoport H., Bhalerao U.T., Stereochemistry of Allylic Oxidation with Selenium Dioxide. Stereospecific Oxidation of Gem-Dimethyl Olefins, J. Am. Chem. Soc., 93: 4835-4840 (1971).
[8] Singleton D.A., Hang C., Isotope Effects and the Mechanism of Allylic Hydroxylation of Alkenes with Selenium Dioxide, J. Org. Chem, 65: 7554-7560 (2000).
[9] Wiberg K.B., Nielsen S.D., Some Observations on Allylic Oxidation, J. Org. Chem, 29: 3353-3361 (1964).
10 El-Qisiari A.K., Qaseer H.A., Henry P.M., An air Oxidizable Bimetallic Palladium (II) Catalyst for Asymmetric Allylic Oxidation of Olefins in Acetic Acid, Tetrahedron Lett., 43: 4229-4231 (2002).
[11] Jia C., Müller P., Mimoun H., Palladium-Catalyzed Allylic Acetoxylation of Olefins Using Hydrogen Peroxide as Oxidant, J. Mol. Catal. A: Chem., 101: 127-136 (1995).
[12] Moiseev I., Vargaftik M., Allylic Oxidation of Alkenes with Palladium Catalysts, Coord. Chem. Rev., 248: 2381-2391 (2004).
[13] Dauben W.G., Lorber M. E., Fullerton D. S., Allylic Oxidation of Olefins with Chromium Trioxide Pyridine Complex, J. Org. Chem, 34: 3587-3592 (1969).
[14] Müller P., Khoi T.T., Allylic Oxidation with Chromium (VI), Tetrahedron Lett., 18: 1939-1942 (1977).
[15] Hirano M., Nakamura K., Morimoto T., Oxidation by Cobalt (III) Acetate. Part 3. Allylic Oxidation of Various Olefins in Acetic Acid, J. Chem. Soc., Perkin Trans 2., 817-820 (1981).
[17] Morimoto T., Machida T., Hirano M., Zhung X., Allylic Oxidation of Olefins by Cobalt (III), Manganese (III), and Cerium (IV) Acetates in Acetic Acid in the Presence of Sodium Bromide, J. Chem. Soc., Perkin Trans 2., 909-913 (1988).
[18] Gilmore J., Mellor J., Oxidation of Olefins by Manganese (III) Acetate to Give Allylic Acetates, J. Chem. Soc. C, 2355-2357 (1971).
[20] Baldwin J., Swallow J., Catalytic Oxidation of Olefins via an Allyl Radical, Angew. Chem. Int. Ed., 8: 601-602 (1969).
[23] Hayes R., Wallace T.W., A simple Route to Methyl 5S-(Benzoyloxy)-6-Oxohexanoate, A key Intermediate in Leukotriene Synthesis, Tetrahedron Lett., 31: 3355-3356 (1990).
[24] Ficini J., d'Angelo J., Une Nouvelle Voie D'acces a L'acide (±) Chrysanthemique Trans, Tetrahedron Lett., 17: 2441-2444 (1976).
[27] García-Cabeza A.L., Marín-Barrios R., Moreno-Dorado F.J., Ortega M. J., Massanet G. M., Guerra F.M., Allylic Oxidation of Alkenes Catalyzed by a Copper–Aluminum Mixed Oxide, Org. Lett., 16: 1598-1601 (2014).
[28] Hartwig J.F., Larsen M. A., Undirected, Homogeneous C–H Bond Functionalization: Challenges And Opportunities, ACS Cent. Sci, 2: 281-292 (2016)
[29] Shi E., Shao Y., Chen S., Hu H., Liu Z., Zhang J., Wan X., Tetrabutylammonium Iodide Catalyzed Synthesis of Allylic Ester with tert-Butyl Hydroperoxide as an Oxidant, Org. Lett., 14: 3384-3387 (2012).
[30] Tran B.L., Driess M., Hartwig J.F., Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters Via Alkenes, J. Am. Chem. Soc., 136: 17292-17301 (2014).
[31] Wang C.-Y., Song R.-J., Wei W.-T., Fan J.-H., Li J.-H., Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes, Chem. Commun., 51: 2361-2363 (2015).
[32] Hong Z.-s., Cao Y., Deng J.-f., A Convenient Alcohothermal Approach for Low Temperature Synthesis of CuO Nanoparticles, Mater. Lett., 52: 34-38 (2002).
[33] Kumar D., Schumacher K., von Hohenesche C.d.F., Grün M., Unger K., MCM-41, MCM-48 and Related Mesoporous Adsorbents: Their Synthesis and Characterisation, ‎Colloids Surf. A, 187: 109-116 (2001).
[37] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F. Stucky G.D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279: 548-552 (1998).
[39] Mayoral J.A., Rodríguez‐Rodríguez S., Salvatella L., Theoretical Insights into Enantioselective Catalysis: The Mechanism of the Kharasch–Sosnovsky Reaction, Chem. Eur. J., 14: 9274-9285 (2008).
[40] Beckwith A. L., Zavitsas A. A., Allylic Oxidations by Peroxy Esters Catalyzed by Copper Salts. The Potential for Stereoselective Syntheses, J. Am. Chem. Soc., 108: 8230-8234 (1986).