Surface Modification of Carbon Nanotube Nanofluids for Higher Thermal Efficacy of Plate and Shell and Tube Heat Exchangers

Document Type : Research Article

Author

Department of Chemical Engineering, Faculty of Petroleum and Petrochemical, Hakim Sabzevari University, Sabzevar, I.R. IRAN

Abstract

Due to the special physical and chemical properties of Carbon NanoTubes (CNT), surface modification was utilized to improve the thermal characteristics of nanofluids. These techniques were done by physical and chemical modification of CNTs and utilized as a thermal fluid in plate and shell and tube heat exchangers. Polyethylene glycol (PEG) wrapping and acid treatment were respectively applied as physical and chemical procedures on the surface of CNTs to improve the dispensability of nanotubes in the base fluid. Results show the better dispersion and stability of these nanoparticles in water and consequently higher thermal conductivity of nanofluids. The thermo-physical properties of these nanofluids were applied as input variables to simulate the plate and shell and tube heat exchangers. The thermal power results of simulated heat exchangers show the higher efficiency of nanofluids compared to the base fluid. This result can be useful to enhance the thermal efficacy of heat exchangers in various industries, especially in oil, gas, and petrochemical industries.

Keywords

Main Subjects


[1] Saidur R., Leong K.Y., Mohammad H.A., A Review on Applications and Challenges of Nanofluids, Rene. Sus. Ener. Rev., 15(3): 1646-68 (2011).
[2] Taylor R., Coulombe S., Otanicar T., Phelan P., Gunawan A., Lv W., Rosengarten G., Prasher  R., Tyagi H., Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids, J. Appl. Phys.,  113(1):  011301 (2013).
[3] Mohebbi K., Rafee R., Talebi F., Effects of Rib Shapes on Heat Transfer Characteristics of Turbulent Flow of Al2O3-Water Nanofluid inside Ribbed Tubes, Iran. J. Chem. Chem.  Eng.(IJCCE), 34(3): 61-77 (2015).
[5] Chang M.-H., Liu H.-S., Tai C.Y., Preparation of Copper Oxide Nanoparticles and Its Application in Nanofluid, Pow. Tech.,  207(1–3):  378-86 (2011).
[6] Keblinski P., Phillpot S. R., Choi S.U.S., Eastman J.A., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transfer, 45(4): 855-63 (2002).
[7] Habibzadeh S., Kazemi-Beydokhti A., Khodadadi A.A., Mortazavi Y., Omanovic S., Shariat-Niassar M., Stability and Thermal Conductivity of Nanofluids of Tin Dioxide Synthesized Via Microwave-Induced Combustion Route, Chem. Eng. J.,  156(2):  471-78 (2010).
[8] Kazemi-Beydokhti A., Heris S. Z., Moghadam N., Shariati-Niasar M., Hamidi A.A., Experimental Investigation of Parameters Affecting Nanofluid Effective Thermal Conductivity, Chem. Eng. Comm., 201(5): 593-611 (2014).
[9] Jafari A., Shahmohammadi A., Mousavi S.M., CFD Investigation of Gravitational Sedimentation Effect on Heat Transfer of a Nano-Ferrofluid, Iran. J. Chem. Chem.  Eng.(IJCCE), 34(1): 87-96 (2015).
[10] Iijima S., Nature354:  56 (1991).
[11] De Volder, M.F.L., Tawfick S.H., Baughman R.H., Hart A.J., Carbon Nanotubes: Present and Future Commercial Applications, Science339(6119): 535-39 (2013).
[12] Zhang H., Li H.X., Cheng H.M., Water-Soluble Multiwalled Carbon Nanotubes Functionalized with Sulfonated Polyaniline, J. Phys. Chem. B,  110(18): 9095-9099 (2006).
[13] Kazemi-Beydokhti A., Hajiabadi S.H., Sanati A., Surface Modification of Carbon Nanotubes as a Key Factor on Rheological Characteristics of Water Based Drilling Muds, Iran. J. Chem. Chem.  Eng.(IJCCE), 37(4): 1-14 (2018).
[14] Stevens, J.L., Huang A.Y., Peng H., Chiang I.W., Khabashesku V.N., Margrave J.L., Sidewall Amino-Functionalization of Single-Walled Carbon Nanotubes through Fluorination and Subsequent Reactions with Terminal Diamines, Nano Lett., 3(3): 331-36 (2003).
[15] Zhao B., Brittain W.J., Polymer Brushes: Surface-Immobilized Macromolecules, Prog. in Poly. Science,  25(5): 677-710 (2000).
[16] Georgakilas V., Kordatos K., Prato M., Guldi D. M., Holzinger M., Hirsch A., Organic Functionalization of Carbon Nanotubes, J. Amer. Chem. Soci.,  124(5):  760-61 (2002).
[17] Sano, M., Kamino A., Okamura J., Shinkai S., Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir-Blodgett Films, Langmuir,  17(17):  5125-28 (2001).
[18] Pompeo F., Resasco D.E., Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine, Nano Lett.,  2(4):  369-73 (2002).
[19] Van Thu, L., Cao Long N., Quoc Trung L., Trinh Tung N., Duc Nghia N., Minh Thanh V., Surface Modification and Functionalization of Carbon Nanotube with Some Organic Compounds, Adv.Nat. Sciences: Nanoscience and Nanotechnology, 4(3): 035017 (2013).
[20] Hong C.-Y., You Y.-Z., C.-Y. Pan, A New Approach to Functionalize Multi-Walled Carbon Nanotubes by the Use Of Functional Polymers, Polymer,  47(12):  4300-09 (2006).
[21] Eitan, A., Jiang K., Dukes D., Andrews R., Schadler L.S., Surface Modification of Multiwalled Carbon Nanotubes:  Toward the Tailoring of the Interface in Polymer Composites, Chem. Mat.,  15(16):  3198-201 (2003).
[22] Kanbur Y., Küçükyavuz Z., Surface Modification and Characterization of Multi-Walled Carbon Nanotube, Fullerenes, Nanotubes and Carbon Nanostructures, 19(6): 497-504 (2011).
[23] Ravelli, D., Merli. D., Quartarone E., Profumo A., Mustarelli P., Fagnoni M., PEGylated Carbon Nanotubes: Preparation, Properties and Applications, RSC Advances, 3(33): 13569-82 (2013).
[24] Chattopadhyay J., de Jesus Cortez F., Chakraborty S., Slater N.K.H., Billups W.E., Synthesis of Water-Soluble PEGylated Single-Walled Carbon Nanotubes, Chem. Mate.,  18(25):  5864-68 (2006).
[25] Kazemi-Beydokhti A., Zeinali Heris S., Thermal /optimization of Combined Heat and Power (CHP) Systems Using Nanofluids, Energy44(1): 241-47 (2012).
[26] Pak B.C., Cho Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles,  Expe. Heat Tran., 11(2): 151-70 (1998).
[27] Brinkman H.C., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys., 20(4): 571-71 (1952).
[28] Gherasim I., Roy G., Nguyen C.T., Vo-Ngoc D., Experimental Investigation of Nanofluids in Confined Laminar Radial Flows, Int. J. Ther. Scie.,  48(8): 1486-93 (2009).