Preparation of Green Cellulose Nanoparticles Containing Pd Complex and Their Application as Photocatalyst

Document Type : Research Article


Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, I.R. IRAN


Cellulose nanowhisker produced from acid hydrolysis of cotton linter and used as starting material for fabrication of a new polymer-supported palladium complex. It is firstly, grafted by citric acid and then loaded by Palladium complex. Successful fabrication of Palladium complex supported polymer confirmed using FT-IR and NMR spectroscopy. Thermal behavior and crystalline structure of the resulting composite evaluated by TGA and XRD techniques. The results showed that composite has higher thermal stability and lower crystallinity in comparison with unmodified cellulose nanowhisker. Finally, the potential application of the synthesized cellulose nanowhisker-graft-citric acid/palladium complex as a photocatalyst for degradation of 2,4-dichlorophenol was examined. The results showed that the polymer-supported Palladium complex could be an effective photocatalyst with a narrow bandgap. It could eliminate 2,4-dichlorophenol after 300 min illumination. 


Main Subjects

[1] Abdolhosseini Sh. A., Mahjoub A., Eslami-Moghadam M., Fakhri H., Dichloro (1,10-Phenanthroline-5, 6-Dione) Palladium (II) Complex Supported by Mesoporous Silica SBA-15 as a Photocatalyst for Degradation of 2,4-Dichlorophenol. Journal of  Molecular. Structure., 1076: 568-575 (2014).
[۲] صباغی، صمد؛ دوراقی، فاطمه؛ تخریب فوتوکاتالیستی متیلن بلو به کمک نانوکامپوزیتZnO/SnO2 ، نشریه شیمی و مهندسی شیمی، (2) 36 ،141 تا 149، (1396).
[3] Kuo C-L., Kuo T-J., Huang M.H., Hydrothermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures, The Journal of Physical Chemistry B., 109: 20115-20121 (2005).
[4] Burda C., Lou Y., Chen X., Samia A.C., Stout J., Gole J.L., Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano letters., 3: 1049-1051 (2003).
[5] Huang D., Persson C., Photocatalyst AgInS2 for Active Overall Water-Splitting: A First-Principles Study, Chemical Physics Letters., 591: 189-192 (2014).
[6] Naseri A., Samadi M., Pourjavadi A., Moshfegh A.Z., Ramakrishna S., Graphitic Carbon Nitride (gC 3 N 4)-Based Photocatalysts for Solar Hydrogen Generation: Recent Advances and Future Development Directions. Journal of Materials Chemistry A, 5(45): 23406-23433 (2017).
[7] Boonen E., Beeldens  A., Recent Photocatalytic Applications for air Purification in Belgium. Coatings, 4(3): 553-573 (2014).
[8] Jiménez M., Ignacio Maldonado M., Rodríguez E.M., Hernández‐Ramírez A., Saggioro E., Carra I., Sanchez Perez J.A., Supported TiO2 Solar Photocatalysis at Semi‐Pilot Scale: Degradation of Pesticides Found in Citrus Processing Industry Wastewater, Reactivity and Influence of Photogenerated Species. Journal of Chemical Technology & Biotechnology, 90(1): 149-157 (2015).
[9] Xia J., He G., Zhang L., Sun X., Wang X., Hydrogenation of Nitrophenols Catalyzed by Carbon Black-Supported Nickel Nanoparticles Under Mild Conditions, Applied Catalysis B: Environmental, 180: 408-415 (2016).
[10] Wang Y., Di Y, Antonietti M., Li H., Chen X., Wang X., Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids, Chemistry of Materials., 22: 5119-5121 (2010).
[11] Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M., A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water Under Visible Light, Nature Materials., 8: 76-80 (2009).
[12] Winkler H.C., Suter M., Naegeli H., Critical Review of the Safety Assessment of Nano-Structured Silica Additives in Food. Journal of Nanobiotechnology, 14(1): 44 (2016).
[13] Napierska D., Thomassen L.C., Lison D., Martens J.A., Hoet P.H., The Nanosilica Hazard: Another Variable Entity. Particle and Fibre Toxicology, 7(1): 39 (2010).
[14] Roman M., Toxicity of Cellulose Nanocrystals: a Review. Industrial Biotechnology, 11(1): 25-33 (2015).
[15] Gonzalez J.S., Ludueña L.N., Ponce A., Alvarez V.A., Poly (Vinyl Alcohol)/Cellulose Nanowhiskers Nanocomposite Hydrogels for Potential Wound Dressings, Materials Science and Engineering: C., 34, 54-61 (2014).
[16] Spinella S., Maiorana A., Qian Q., Dawson N.J., Heyworth V., McCallum S.A., Ganesh M., Singer K.D., Gross R.A., Concurrent Cellulose Hydrolysis and Esterification to Prepare a Surface-Modified Cellulose Nanocrystal Decorated with Carboxylic Acid Moieties, ACS Sustainable Chemistry & Engineering., 4, 1538-1550 (2016).
[17] Siqueira G., Bras J., Dufresne A. New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate, Langmuir., 26, 402-411 (2010).
[18] Tehrani A.D., Neysi E., Surface Modification of Cellulose Nanowhisker Throughout Graft Polymerization of 2-Ethyl-2-Oxazoline, Carbohydrate Polymers., 97: 98-104 (2013).
[19] Habibi Y., Goffin A-L., Schlitz N., Duquesne E., Dubois P., Dufresne A., Bionanocomposites Based on Poly (Ε-Caprolactone)-Grafted Cellulose Nanocrystals by Ring-Opening Polymerization, Journal of Materials Chemistry., 18, 5002-5010 (2008).
[20] Goffin A-L., Raquez J-M., Duquesne E., Siqueira G., Habibi Y., Dufresne A., Dubois P., From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites, Biomacromolecules., 12, 2456-2465 (2011).
[21] Tehrani A.D., Basiryan A., Dendronization of Cellulose Nanowhisker with Cationic Hyperbranched Dendritic Polyamidoamine, Carbohydrate Polymers. 120, 46-52 (2015).
[22] Gwon J.G., Lee S.Y., Doh G.H., Kim J.H., Characterization of Chemically Modified Wood Fibers using FTIR Spectroscopy for Biocomposites. Journal of Applied Polymer Science, 116(6): 3212-3219 (2010).
[23] El‐Wakil N.A., Hassan M.L., Structural Changes of Regenerated Cellulose Dissolved in FeTNa, NaOH/Thiourea, and NMMO Systems. Journal of Applied Polymer Science, 109(5): 2862-2871 (2008).
[24] Liu S., Tao D., Bai H., Liu X., Cellulose‐Nanowhisker‐Templated Synthesis of Titanium Dioxide/Cellulose Nanomaterials with Promising Photocatalytic Abilities, Journal of Applied Polymer Science., 126: E282-E290(2012).
[25] Verma S., Le Bras J., Jain S.L., Muzart J., Nanocrystalline Starch Grafted Palladium (II) Complex for the Mizoroki–Heck Reaction, Dalton Transactions., 42: 14454-14459 (2013).
[26] Verma S., Tripathi D., Gupta P., Singh R., Bahuguna G.M., Chauhan R., Saran S., Jain S.L. Highly Dispersed Palladium Nanoparticles Grafted onto Nanocrystalline Starch for the Oxidation of Alcohols Using Molecular Oxygen as an Oxidant, Dalton Transactions., 42: 11522-11527 (2013).