Synthesis and Investigation of Photophysical Properties of Zinc Complexes with Schiff Base Ligands Derived from ortho-Vanillin

Document Type : Research Article

Authors

Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, I.R. IRAN

Abstract

Schiff base ligands provide a platform for the development of suitable ligands for coordination to transitional metal ions. In this research, synthesis, characterization, and photophysical properties of three zinc complexes with Schiff bases ligands derived from ortho-vanillin are investigated.  6-Methoxy-2-[(E)-Aryliminomethyl]-phenol (Aryl = Phenyl; 2,6-dimethyl; 2,6-diisopropylphenyl), comprising L1-3 ligands, and the corresponding zinc complexes [Zn(Ln)2, n=1-3] were synthesized. The complexes were characterized using infrared, ultraviolet, and nuclear magnetic resonance spectroscopy techniques. The complexes show interesting photophysical properties. In the absorption spectra of the zinc complexes, the observed high-intensity peaks are attributed to the intra ligand p-p < /em>*, originating from ortho-vanillin and aromatic rings. All three zinc complexes feature emission bands in dichloromethane, while only two metal complexes are emissive in the solid-state.

Keywords

Main Subjects


[1] Cozzi, P. G., Metal-Salen Schiff base Complexes in Catalysis: Practical Aspects. Chemical Society Reviews, 33 (7): 410-421, (2004).
[2] Gennari, C.; Piarulli, U., Combinatorial Libraries of Chiral Ligands for Enantioselective Catalysis. Chemical Reviews, 103 (8): 3071-3100, (2003).
[3] Yoon, T. P.; Jacobsen, E. N., Privileged Chiral Catalysts. Science, 299 (5613): 1691-1693, (2003).
[5] Tidwell, T. T., Hugo (Ugo) Schiff, Schiff Bases, and a Century of β‐Lactam Synthesis. Angewandte Chemie International Edition, 47 (6): 1016-1020, (2008).
[6] Andiappan, K.; Sanmugam, A.; Deivanayagam, E.; Karuppasamy, K.; Kim, H.-S.; Vikraman, D., In Vitro Cytotoxicity Activity of Novel Schiff Base Ligand–Lanthanide Complexes. Scientific Reports, 8 (1): 3054, (2018).
[7] More, G.; Raut, D.; Aruna, K.; Bootwala, S., Synthesis, Spectroscopic Characterization and Antimicrobial Activity Evaluation of New Tridentate Schiff Bases and Their Co(II) Complexes. Journal of Saudi Chemical Society, 21 (8): 954-964, (2017).
[8] Vidya Sagar Babu, S.; Reddy, K. H., Rare Earth Nitrate Complexes with an ONO Schiff Base Ligand: Spectral, Thermal, Luminescence and Biological Studies. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36 (4): 101-109, (2017).
[9] Miao, C.; Li, X.-X.; Lee, Y.-M.; Xia, C.; Wang, Y.; Nam, W.; Sun, W., Manganese Complex-Catalyzed Oxidation and Oxidative Kinetic Resolution of Secondary Alcohols by Hydrogen Peroxide. Chemical Science, 8 (11): 7476-7482, (2017).
[10] Al Zoubi, W.; Ko, Y. G., Schiff Base Complexes and Their Versatile Applications as Catalysts in Oxidation of Organic Compounds: Part I. Applied Organometallic Chemistry, 31 (3): e3574, (2017).
[11] Abu-Dief, A. M.; Mohamed, I. M. A., A Review on Versatile Applications of Transition Metal Complexes Incorporating Schiff Bases. Beni-Suef University Journal of Basic and Applied Sciences, 4 (2): 119-133, (2015).
[12] Çapan, A.; Uruş, S.; Sönmez, M., Ru(III), Cr(III), Fe(III) Complexes of Schiff Base Ligands Bearing Phenoxy Groups: Application as Catalysts in the Synthesis of Vitamin K3. Journal of Saudi Chemical Society, 22: 757-766, (2018).
[13] Al Zoubi, W.; Al-Hamdani, A. A. S.; Putu Widiantara, I.; Hamoodah, R. G.; Ko, Y. G., Theoretical Studies and Antibacterial Activity for Schiff Base Complexes. Journal of Physical Organic Chemistry, 30 (12): 3707-3719, (2017).
[14] Kumar, R.; Mathur, P., Oxidation of Phenyl Propyne Catalyzed by Copper(II) Complexes of a Benzimidazolyl Schiff Base Ligand: Effect of Acid/Base, Oxidant, Surfactant and Morphology. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 818-823, (2015).
[15] Bikas, R.; Emami, M.; Ślepokura, K.; Noshiranzadeh, N., Preparing Mn(iii) Salen-Type Schiff Base Complexes Using 1,3-Oxazines Obtained by Mannich Condensation: Towards Removing Ortho-Hydroxyaldehydes. New Journal of Chemistry, 41 (18): 9710-9717, (2017).
[16] Alkordi, M. H.; Weseliński, Ł. J.; D'Elia, V.; Barman, S.; Cadiau, A.; Hedhili, M. N.; Cairns, A. J.; AbdulHalim, R. G.; Basset, J.-M.; Eddaoudi, M., CO2 Conversion: the Potential of Porous-Organic Polymers (POPs) for Catalytic CO2–Epoxide Insertion. Journal of Materials Chemistry A, 4 (19): 7453-7460, (2016).
[17] Tomczyk, D.; Bukowski, W.; Bester, K.; Urbaniak, P.; Seliger, P.; Andrijewski, G.; Skrzypek, S., The Mechanism of Electropolymerization of Nickel(ii) Salen Type Complexes. New Journal of Chemistry, 41 (5): 2112-2123, (2017).
[18] Xia, Q.; Liu, Y.; Li, Z.; Gong, W.; Cui, Y., A Cr(Salen)-Based Metal–Organic Framework as a Versatile Catalyst for Efficient Asymmetric Transformations. Chemical Communications, 52 (89): 13167-13170, (2016).
[19] Timur, M.; Demetgül, C., Synthesis and Metal Ion Uptake Studies of Silica Gel-Immobilized Schiff Base Derivatives and Catalytic Behaviors of their Cu(II) Complexes. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36 (4): 111-122, (2017).
[20] خانلری، ط., تهیه پلیمر حمایت کننده پالادیوم، برپایه پلی وینیل الکل و استفاده از آن در واکنش هِک. نشریه شیمی و مهندسی شیمی ایران،(2) 34: 25 تا40، (1394) .
[21] Kumar, K. S.; Ganguly, S.; Veerasamy, R.; De Clercq, E., Synthesis, Antiviral Activity and Cytotoxicity Evaluation of Schiff Bases of Some 2-Phenyl Quinazoline-4(3)H-Ones. European Journal of Medicinal Chemistry, 45 (11): 5474-5479, (2010).
[22] Abo Dena, A. S., To the Memory of Hugo Schiff: Applications of Schiff Bases in Potentiometric Sensors. Russian Journal of Applied Chemistry, 87 (3): 383-396, (2014).
[24] Niederhoffer, E. C.; Timmons, J. H.; Martell, A. E., Thermodynamics of Oxygen Binding in Natural and Synthetic Dioxygen Complexes. Chemical Reviews, 84 (2): 137-203, (1984).
[25] Bailey, C. L.; Drago, R. S., Utilization of O2 for the Specific Oxidation of Organic Substrates with Cobalt(II) Catalysts. Coordination Chemistry Reviews, 79 (3): 321-332, (1987).
[26] یگانه فعال, ع.; موجدیان, م.; کلهر, م.; عطاران, ع.; تبارکی, ر., تهیه مشتق تازه ای از بازشیف تیوفن تترا هیدرو بنزو و کاربرد آن در اندازه گیری فلوئورید در خمیردندان به عنوان یک حسگر تازه فلورسانی فلوئورید، نشریه شیمی و مهندسی شیمی ایران،(3) 35: 65 تا75، (1395).
[27] Chen, X.; Zhou, Q.; Cheng, Y.; Geng, Y.; Ma, D.; Xie, Z.; Wang, L., Synthesis, Structure and Luminescence Properties of Zinc (II) Complexes with Terpyridine Derivatives as Ligands. Journal of Luminescence, 126 (1): 81-90, (2007).
[28] Archer, R. D.; Chen, H.; Thompson, L. C., Synthesis, Characterization, and Luminescence of Europium(III) Schiff Base Complexes. Inorganic Chemistry, 37 (8): 2089-2095, (1998).
[29] Dong, Y.-W.; Fan, R.-Q.; Chen, W.; Zhang, H.-J.; Song, Y.; Du, X.; Wang, P.; Wei, L.-G.; Yang, Y.-L., Different Conjugated System Zn(ii) Schiff Base Complexes: Supramolecular Structure, Luminescent Properties, and Applications in the PMMA-Doped Hybrid Materials. Dalton Transactions, 46 (4): 1266-1276, (2017).
[30] Guo, H.-F.; Zhao, X.; Ma, D.-Y.; Xie, A.-P.; Shen, W.-B., Two Palladium(II) Complexes Based on Schiff Base Ligands: Synthesis, Characterization, Luminescence, and Catalytic Activity. Transition Metal Chemistry, 38 (3): 299-305, (2013).
[31] Kawamoto, T.; Nishiwaki, M.; Tsunekawa, Y.; Nozaki, K.; Konno, T., Synthesis and Characterization of Luminescent Zinc(II) and Cadmium(II) Complexes with N,S-Chelating Schiff Base Ligands. Inorganic Chemistry, 47 (8): 3095-3104, (2008).
[32] Chakraborty, S.; Bhattacharjee, C. R.; Mondal, P.; Prasad, S. K.; Rao, D. S. S., Synthesis and Aggregation Behaviour of Luminescent Mesomorphic Zinc(II) Complexes with 'Salen' Type Asymmetric Schiff Base Ligands. Dalton Transactions, 44 (16): 7477-7488, (2015).
[33] Martínez, S.; Igoa, F.; Carrera, I.; Seoane, G.; Veiga, N.; De Camargo, A. S. S.; Kremer, C.; Torres, J., A Zn(II) Luminescent Complex with a Schiff base Ligand: Solution, Computational and Solid State Studies. Journal of Coordination Chemistry, 71 (6): 874-889, (2018).
[34] Winter, A.; Friebe, C.; Hager, M. D.; Schubert, U. S., Synthesis of Rigid π‐Conjugated Mono‐, Bis‐, Tris‐, and Tetrakis(terpyridine)s: Influence of the Degree and Pattern of Substitution on the Photophysical Properties. European Journal of Organic Chemistry, 2009 (6): 801-809, (2009).
  [35] Li, N.; Zhu, Q.-E.; Hu, H.-M.; Guo, H.-L.; Xie, J.; Wang, F.; Dong, F.-X.; Yang, M.-L.; Xue, G.-L., Hydrothermal Syntheses, Crystal Structures and Luminescence Properties of Zinc(II) Coordination Polymers Constructed by Bifunctional 4′-(4-Carboxyphenyl)-3,2′:6′,3″-Terpyridine. Polyhedron, 49 (1): 207-215, (2013).
[36] Kawamoto, T.; Nishiwaki, M.; Tsunekawa, Y.; Nozaki, K.; Konno, T., Synthesis and Characterization of Luminescent Zinc(II) and Cadmium(II) Complexes with N,S-Chelating Schiff Base Ligands. Inorganic Chemistry, 47 (8): 3095-3104, (2008).
[37] Lin, H.-C.; Huang, C.-C.; Shi, C.-H.; Liao, Y.-H.; Chen, C.-C.; Lin, Y.-C.; Liu, Y.-H., Synthesis of Alkynylated Photo-Luminescent Zn(ii) and Mg(ii) Schiff Base Complexes. Dalton Transactions, (7): 781-791, (2007).
[38] Yu, T.; Su, W.; Li, W.; Hong, Z.; Hua, R.; Li, M.; Chu, B.; Li, B.; Zhang, Z.; Hu, Z. Z., Synthesis, Crystal Structure and Electroluminescent Properties of a Schiff Base Zinc Complex. Inorganica Chimica Acta, 359 (7): 2246-2251, (2006).
[39] Dong, Y.-W.; Fan, R.-Q.; Chen, W.; Zhang, H.-J.; Song, Y.; Du, X.; Wang, P.; Wei, L.-G.; Yang, Y.-L., Different Conjugated System Zn(ii) Schiff Base Complexes: Supramolecular Structure, Luminescent Properties, and Applications in the PMMA-Doped Hybrid Materials. Dalton Transactions, 46 (4): 1266-1276, (2017).
[40] Faghih, Z.; Neshat, A.; Wojtczak, A.; Faghih, Z.; Mohammadi, Z.; Varestan, S., Palladium (II) Complexes Based on Schiff Base Ligands Derived from Ortho-Vanillin; Synthesis, Characterization and Cytotoxic Studies. Inorganica Chimica Acta, 471: 404-412, (2018).
[42] Chantarasiri, N.; Tuntulani, T.; Tongraung, P.; Seangprasertkit-Magee, R.; Wannarong, W.,
New Metal-Containing Epoxy Polymers from Diglycidyl Ether of Bisphenol A and Tetradentate Schiff Base Metal Complexes. European Polymer Journal, 36 (4): 695-702, (2000).
[43] Ryu, S. Y.; Huh, M.; You, Y.; Nam, W., Phosphorescent Zinc Probe for Reversible Turn-on Detection with Bathochromically Shifted Emission. Inorganic Chemistry, 54 (20): 9704-9714, (2015).
[44] Pucci, D.; Aiello, I.; Bellusci, A.; Crispini, A.; Ghedini, M.; Deda, M. L., Coordination Induction of Nonlinear Molecular Shape in Mesomorphic and Luminescent ZnII Complexes Based on Salen‐Like Frameworks. European Journal of Inorganic Chemistry, 2009 (28): 4274-4281, (2009).
[45] Chakraborty, S.; Dhar Purkayastha, D.; Das, G.; Bhattacharjee, C. R.; Mondal, P.; Prasad, S. K.; Rao, D. S. S., Photoluminescent Tetrahedral d10-Metal Schiff Base Complexes Exhibiting Highly Ordered Mesomorphism. Polyhedron, 105: 150-158, (2016).