Fabrication of Nanocomposite Films Composed of Starch/Gelatin/Clay via Casting Method and Analyzing Their Characteristics Using RSM

Document Type : Research Article

Authors

Faculty of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

Abstract

In this study, the nanocomposite films composed of starch/gelatin/nano clay were fabricated and their physiomechanical properties were investigated. The experimental design was done via the RSM method with Design Expert 7.0 software. The gelatin/starch weight ratio and the nanoclay weight percent were selected as independent variables and the tensile strength, Young modulus, elongation at break, and contact angles as dependent ones. The mathematical equations that identify the relationship between the dependent and independent variables were obtained. The results demonstrated that the tensile strength and modulus and the hydrophobicity of the surfacewere increased as nanoclay increased and the portion of gelatin decreased while the elongation at break showed reverse behavior. In the following, the optimization was done and the optimized values for gelatin/starch and nanoclay weight, percent were introduced to have the maximum tensile strength and minimum hydrophilicity. The optimum nanocomposites were fabricated and analyzed via FT-IR, SEM, XRD, and biodegradability tests. The obtained results showed that the nanoclay sheets were intercalated and proper dispersion of nanosheets in the polymeric matrix achieved. The nanocomposite films showed proper degradability and their weight was decreased by 40% after 6 weeks. Overall, this research work confirmed the proper potential of starch/gelatin/nanoclay nanocomposites as biodegradable food packaging films.

Keywords

Main Subjects


[1] Tang X., Alavi S., Herald T.J., Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films, Cereal Chem. 85 (3): 433–439 (2008).
[2] Wu Y., Luo X., Li W., Song R., Li J., Li Y., Li B., Liu S., Green and Biodegradable Composite Films with Novel Antimicrobial Performance Based on Cellulose, Food Chem. 15 (197): 250-256 (2016).
[3] Malinconico M., Cerruti P., Santagata G., Immirzi B., Natural Polymers and Additives in Commodity and Specialty Applications: A Challenge for the Chemistry of Future, Macromol. Symp. 337 (1): 124-133 (2014).
[4] حجتی، هادی؛ مزیدی، محمد؛ خواجه، سلمان؛ "مطالعه پلیمرهای زیست تخریب پذیر به منظور حذف مشکلات زیست محیطی پلیمرهای سنتزی غیر قابل تجزیهپنجمین همایش تخصصی مهندسی محیط زیست، دانشگاه تهران، دانشکده محیط زیست (1390).
[5] Ghanbarzadeh B., Musavi M., Oromiehie A.R., Rezayi K., Razmi Rad E., Milani J., Effect of Plasticizing Sugars on Water Vapor Permeability, Surface Energy and Microstructure Properties of Zein Films, LWT - Food Sci. Technol., 40 (7): 1191–1197 (2007).
[6] Sessini V., Arrieta M.P., Kenny J.M., Peponi L., Processing of Edible Films Based on Nanoreinforced Gelatinized Starch, Polym. Degrad. Stab., 132: 157-168 (2016).
[7] Heydari A., Alemzadeh I., Vossoughi M., Functional Properties of Biodegradable Corn Starch Nanocomposites for Food Packaging Applications, Mater. Design., 50: 954–961 (2013).
[8] Baniasadi H, Ramazani A., Mashayekhan S., Fabrication and Characterization of Conductive  Chitosan/Gelatin-Based Scaffolds for Nerve Tissue Engineering, Int. J. Biol. Macromol., 74: 360–366 (2015).
[9] Tongdeesoontorn W., Mauer L.J., Wongruong S., Sriburi  P., Rachtanapun P., Mechanical and Physical Properties of Cassava Starch-Gelatin Composite Films, Int. J. Polym. Mater., 61:778–792 (2012).
[10] Santos T.M., Sa M., Filho M.S., Caceres C.A., Rosa M.F., Morais J.P.S., Pinto A.M.B., Azeredo H.M.C., Fish Gelatin films as Affected by Cellulose Whiskers and Sonication, Food Hydrocoll., 41: 113-118 (2014).
[11] وزیری، اسماء سادات؛ عالم زاده، ایران؛ وثوقی، منوچهر، ریزپوشانی دوکوزاهگزاانوئیک اسید (DHA) در زیست‌کامپوزیت آلژینات، پکتین و ژلاتین و بررسی خواص فیزیکی و شیمیایی آن، نشریه شیمی و مهندسی شیمی ایران،(3)38: 105 تا 115(1398).
[12] Bayandori Moghaddam A., Hosseini S., Badraghi J., Banaei A., Hybrid Nanocomposite Based on Cofe2o4 Magnetic Nanoparticles and Polyaniline, Iran. J. Chem. Chem. Eng. (IJCCE), 29 (4): 173-179 (2010).
[13] Ahmadi, M., Jahanmardi R., Mohammadizade M., Preparation of PMMA/Mwnts Nanocomposite Microcellular Foams by In-Situ Generation of Supercritical Carbon Dioxide, Iran. J. Chem. Chem. Eng. (IJCCE), 35 (2): 63-72 (2016).
[14] Tajeddin B., Ramedani N., Preparation and Characterization (Mechanical and Water Absorption Properties) of CMC/PVA/Clay Nanocomposite Films, Iran. J. Chem. Chem. Eng. (IJCCE), 35 (3): 9-15 (2016).
[15] Kumar, P., Sandeep, K.P., Alavi, S., Truong V.D., Gorga R.E., Preparation and Characterization of Bio-Nanocomposite Films Based on Soy Protein Isolate and Montmorillonite Using Melt Extrusion, J. Food Eng., 100 (3): 480-489 (2010).
[16] Staroszczyk H., Malinowska-Pańczyk E., Gottfried K., Kołodziejska I., Fish Gelatin-Nanoclay Films. Part I: Effect of a Kind of Nanoclays and Glycerol Concentration on Mechanical and Water Barrier Properties of Nanocomposites, J. Food Process. Preserv., 41(5): E13211 (2017).
[17] Noshirvani N., Ghanbarzadeh B., Entezami A.A., Morphology, Contact Angle and Color Properties of Starch-Polyvinyl Alcohol-Cellulose Nanocrystal Bionanocomposite Films, Iran. Food Sci. Technol. Res. J. 21 (2): 141-154 (2011).
[18] خوشحال، عباس؛ محمدیان گزاز، سمیه؛ مالک، امیرحسین، بررسی رفتار زیست تخریب پذیری آمیخته های پلی آمید 6/ نشاسته گرمانرم به روش پاسخ رویه سطح، نشریه شیمی و مهندسی شیمی ایران، (3)37: 237 تا 250 (1396).
[19] Baniasadi H., Ramazani A., Javan Nikkhah S., Investigation of In Situ Prepared Polypropylene/Clay Nanocomposites Properties and Comparing to Melt Blending Method, Mater. Design., 31 (1): 76-84 (2010).
[20] Hejri Z, Seifkordi A.A., Ahmadpour A, Zebarjad S.M., Maskooki A., Biodegradable Starch/Poly (Vinyl Alcohol) Film Reinforced with TiO2 Nanoparticles, Int. J. Miner. Metall. Mater., 20(10): 1001-1011 (2013).
[21] Karimian M., Mashayekhan S., Baniasadi H., Fabrication of Porous Gelatin-Chitosan Microcarriers and Modeling of Process Parameters Via The RSM Method, Int. J. Biol. Macromol., 88: 288-295 (2016).
[23] Farahnaky A., Dadfar S.M.M, Shahbazi M., Physical and Mechanical Properties of Gelatin–Clay Nanocomposite, J. Food Eng., 122: 78–83 (2014).
[25] Honarkar H., Barikani M., Nanoclay Dispersion and Its Effect on Properties of Waterborne Polyurethanes, Iran. J. Polym. Sci. Technol.  26: 393-401 (2014).
[26] Torres F.G, Troncoso O.P., Torres C., Díaz D.A, Amaya, E., Biodegradability and Mechanical Properties of Starch Films from Andean Crops, Int. J. Biol. Macromol. 48 (4): 603-606 (2011).
[27] Nur Hanani Z.A., Roos Y.H., Kerry J.P., Use and Application of Gelatin as Potential Biodegradable Packaging Materials for Food Products, Int. J. Biol. Macromol. 71: 94-102 (2014).