Investigation of Structure, Stability, and Racemization of Triazacycloheptatetraene Isomers from Theoretical Calculations View

Document Type : Research Article

Author

Department of Chemistry, Karaj branch, Islamic Azad University, Karaj, I.R. IRAN

Abstract

Regarding the important role of azacycloheptatetraenes and their relative carbenes in organic chemistry, the structure and stability of ten triazacycloheptatetraenes and their corresponding carbenes as well as their racemization are studied at ab initio and DFT levels. The species of 7a is introduced as the most stable triazacycloheptatetraenes with the largest di-imine angle and the lowest twist angle.  The species of 1a and 9a are found as the most unstable allenes through lone pairs’ repulsion of their adjacent nitrogens. Their non-planar symmetry results to their optical activity. Racemization of triazacycloheptatetraenes performs through their singlet triazacycloheptatrienylidenes and depends on the topology of nitrogen atoms. Species with one of their nitrogen atoms in the 1 position of the ring, including 1,2,4-; 1,2,5-; 1,3,4-; 1,3,5; and 1,4,5-isomers, show racemization through their corresponding anti-aromatic singlet triazacycloheptatrienylidenes as TS. In contrast, aromatic singlet carbenes appear as TS  for 2,3,4-; 2,3,5-triazacycloheptatetraenes. In addition species with a nitrogen atom in the 1 position of the ring especially 2a have smaller ΔE#, ΔE#, ΔH#, and ΔG#.

Keywords

Main Subjects


[1] Wentrup. C, "Rearrangements and Interconversions of Carbenes and Nitrenes", in Minisci. F,Hendrickson. J.B,Wentrup. C (Eds.) "Synthetic and Mechanistic Organic Chemistry", Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 173-251. (1976).
[2] Wentrup. C, "Carbenes and Nitrenes in Heterocyclic Chemistry: Intramolecular Reactions", in Katritzky. A.R, Boulton. A.J (Eds.) "Advances in Heterocyclic Chemistry", Academic Press, pp. 231-361 (1981).
[3] Platz. M.S, "Comparison of Phenylcarbene and Phenylnitrene", Accounts of Chemical Research, 28:487-492 (1995).
[5] Grisant. N.P, Platz. M.S, Kinetics and Spectroscopy of Substituted Phenylnitrenes, in Advances in Physical Organic Chemistry, Academic Press, pp. 255-304 (2001).
[6] Crow. W.D, Wentrup. C, Nitrogen Scrambling in 2-Pyridylnitrene, Journal of the Chemical Society D: Chemical Communications, 0: 1387-1388 (1969).
[7] Evans. R.A, Wong. M.W, Wentrup. C, 2-Pyridylnitrene−1,3-Diazacyclohepta-1,2,4,6-Tetraene Rearrangements in the Trifluoromethyl-2-Pyridyl Azide Series, Journal of the American Chemical Society, 118:4009-4017 (1996).
[8] Karney. W.L, Borden. W.T, Ab Initio Study of the Ring Expansion of Phenylnitrene and Comparison with the Ring Expansion of Phenylcarbene, Journal of the American Chemical Society, 119: 1378-1387  (1997).
[9] Matzinger. S, Bally. T, Patterson. E.V, McMahon. R.J, The C7H6 Potential Energy Surface Revisited: Relative Energies and IR Assignment, Journal of the American Chemical Society, 118:1535-154. (1996).
[11] Schreiner P.R., Karney W.L., von Ragué Schleyer P., Borden W.T., Hamilton T.P., Schaefer H.F., Carbene Rearrangements Unsurpassed:  Details of the C7H6 Potential Energy Surface Revealed, The Journal of Organic Chemistry, 61:7030-7039 (1996).
[12] Wentrup C., Winter H.W., Isolation of Diazacycloheptatetraenes from Thermal Nitrene-Nitrene Rearrangements, Journal of the American Chemical Society, 102:6159-6161 (1980).
[13] Wentrup C., Thétaz C., Tagliaferri E., Lindner H.J., Kitschke B., Winter H.-W., Reisenauer H.P., Cyclic Carbodiimides in Nitrene Rearrangements, Angewandte Chemie International Edition in English, 19: 566-567  (1980).
[14] Kuzaj M., Lüerssen H., Wentrup C., ESR Observation of Thermally Produced Triplet Nitrenes and Photochemically Produced Triplet Cycloheptatrienylidenes, Angewandte Chemie International Edition in English, 25:480-482 (1986).
[15] Chapman O.L., Sheridan R.S., 3-Pyridylmethylene: Infrared Spectrum and Photochemistry, Journal of the American Chemical Society, 101:3690-3692 (1979).
[16] Chapman O.L., Sheridan R.S., Leroux J.P., Photochemical Transformations on the C6H5N Energy Surface, Recueil des Travaux Chimiques des Pays-Bas, 98:334-337 (1979).
[17] Chapyshev S.V., Kuhn A., Wong M.W., Wentrup C., Mono-, Di-, and Trinitrenes in the Pyridine Series, Journal of the American Chemical Society, 122:1572-1579 (2000).
[18] Kvaskoff D., Bednarek P., George L., Waich K., Wentrup C., Nitrenes, Diradicals, and Ylides. Ring Expansion and Ring-Opening in 2-Quinazolylnitrenes, The Journal of Organic Chemistry, 71:4049-4058 (2006).
[19] Liu Y., Luo Z., Zhang J.Z., Xia F., DFT Calculations on the Mechanism of Transition-Metal-Catalyzed Reaction of Diazo Compounds with Phenols: O–H Insertion versus C–H Insertion, The Journal of Physical Chemistry A, 120:6485-6492 (2016).
[20] Jasiński R., Jasińska E., Dresler E., A DFT Computational Study of the Molecular Mechanism of [3 +2] Cycloaddition Reactions Between Nitroethane and Benzonitrile N-Oxides, Journal of Molecular Modeling, 23:13 (2016).
[21] Ricci M., Lofrumento C., Becucci M., Castellucci E.M., The Raman and SERS Spectra of Indigo and Indigo-Ag2 Complex: DFT Calculation and Comparison with Experiment, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188:141-148 (2018).
[22] Rzepa H.S., Arkhipenko S., Wan E., Sabatini M.T., Karaluka V., Whiting A., Sheppard T.D., An Accessible Method for DFT Calculation of 11B NMR Shifts of Organoboron Compounds, The Journal of Organic Chemistry, 83:8020-8025 (2018).
[23] Zhang S., Yu G., Chen J., Zhao Q., Zhang X., Wang B., Huang J., Deng S., Wang Y., Elucidating Ozonation Mechanisms of Organic Micropollutants Based on DFT Calculations: Taking Sulfamethoxazole as a Case, Environmental Pollution, 220:971-980 (2017).
[25] Khalil Warad I., Synthesis, Physico-Chemical, Hirschfield Surface and DFT/B3LYP Calculation of Two New Hexahydropyrimidine Heterocyclic Compounds, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(4): 59-68 (2019).
[26] Li H., Wang D., Wang C., DFT Study on the Possible Intramolecular Rearrangement of Four Monocyclic Monoterpenes, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(1):169-173 (2018).
[27]  سلیمانی امیری س.,  کسایی م., بررسی محاسباتی حالت­های الکترونی یک تایی، سه تایی و پنج تایی نایترنواتینیل هالوسایلیلن، نشریه شیمی و مهندسی شیمی ایران، (4)35 : 87 تا 98 (2017).
[28] Kassaee M.Z., Nimlos M.R., Downie K.E., Waali E.E., A Mundo Study of 3-, 5-, 7- and 9-Membered Carbocyclic, Completely Conjugated, Planar Carbenes and Their Nonplanar Isomers, Tetrahedron, 41:1579-1586 (1985).
[29] Kassaee M.Z., Haerizade B.N., Arshadi S., Halogenated Isomers of the Interstellar C3H2: An Ab Initio Comparative Study, Journal of Molecular Structure: THEOCHEM, 639: 187-193 (2003). 
[30] Kassaee M.Z., Azarnia J., Arshadi S., 1,2,4,6-Cycloheptatetraenes Racemizations: Substituent Effects Via ab Initio, Journal of Molecular Structure: Theo.Chem., 686:115-122 (2004).
[31] Kassaee M.Z., Koohi M., Mirror Image Conversions of Cyclic Conjugated Non-Planar Allenes, C9H7X (X=H, F, Cl, Br), Journal of Molecular Structure: Theo.Chem, 755:91-98 (2005).
[32] Kassaee M.Z., Koohi M., Ring Flips of Allenes (C9H7X) Over Triplet Carbenes at ab Initio and DFT Levels (X=H, F, Cl, Br), Journal of Molecular Structure: Theo.Chem, 815:21-29 (2007).
[33] Kassaee M.Z., Soleimani-Amiri S., Racemizations of Diazacycloheptatetraenes Through Singlet Diazacycloheptatrienylidenes at Theoretical Levels, Journal of Molecular Structure: THEOCHEM, 913:185-194 (2009).
[34] Langdon S.M., Legault C.Y., Gravel M., Origin of Chemoselectivity in N-Heterocyclic Carbene Catalyzed Cross-Benzoin Reactions: DFT and Experimental Insights, The Journal of Organic Chemistry, 80:3597-3610 (2015).
[35] Nelson J.W., Grundy L.M., Dang Y., Wang Z.-X., Wang X., Mechanism of Z-Selective Olefin Metathesis Catalyzed by a Ruthenium Monothiolate Carbene Complex: A DFT Study, Organometallics, 33:4290-4294 (2014).
[36] Menezes da Silva V.H., Braga A.A.C., Cundari T.R., N-Heterocyclic Carbene Based Nickel and Palladium Complexes: A DFT Comparison of the Mizoroki–Heck Catalytic Cycles, Organometallics, 35:3170-3181 (2016).
[37] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J., Brothers E.N., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09, 2009, Gaussian, Inc.: Wallingford, CT, USA.
[39] Adamo C., Barone V., Toward Reliable Adiabatic Connection Models Free from Adjustable Parameters, Chemical Physics Letters, 274:242-250 (1997).
[40] Krishnan R., Binkley J.S., Seeger R., Pople J.A., Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions, The Journal of Chemical Physics, 72:650-654 (1980).
[41] Pople J.A., Head‐Gordon M., Raghavachari K., Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies, The Journal of Chemical Physics, 87:5968-5975 (1987).
[42] Scuseria G.E., III H.F.S., Is Coupled-Cluster Singles and Doubles (CCSD) More Computationally Intensive Than Quadratic Configuration Interaction (QCISD)?, The Journal of Chemical Physics, 90:3700-3703 (1989).
[43] Krishnan. R., Pople. J.A., Approximate Fourth-Order Perturbation Theory of the Electron Correlation Energy, International Journal of Quantum Chemistry, 14:91-100 (1978).
[44] Krishnan R., Frisch M.J., Pople J.A., Contribution of Triple Substitutions to the Electron Correlation Energy in Fourth Order Perturbation Theory, The Journal of Chemical Physics, 72:4244-4245 (1980).
[45] Hout R.F., Levi B.A., Hehre W.J., Effect of Electron Correlation on Theoretical Vibrational frequencies, Journal of Computational Chemistry, 3:234-250 (1982).
[46] DeFrees D.J., McLean A.D., Molecular Orbital Predictions of the Vibrational Frequencies of Some Molecular Ions, The Journal of Chemical Physics, 82:333-341 (1985).
[47] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chemical Reviews, 88:899-926 (1988).
[48] Murata S., Abe S., Tomioka H., Photochemical Reactions of Mesityl Azide with Tetracyanoethylene:  Competitive Trapping of Singlet Nitrene and Didehydroazepine, The Journal of Organic Chemistry, 62:3055-3061 (1997).
[49] Chapman O.L., Le Roux J.P., 1-Aza-1,2,4,6-Cycloheptatetraene, Journal of the American Chemical Society, 100:282-285 (1978).