Investigation of Ability of Graphene-Based Nanostructures as Sodium Ion Batteries

Document Type : Research Article


Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, I.R. IRAN


In this study, graphene-based nanostructures were simulated using computational quantum chemistry methods and individual interactions of isoelectronic ions sodium and fluoride with inner and outer faces of them have been studied. Also, simultaneous interactions of these ions with inner and outer faces of nanostructures have been investigated with two models.  In the first model, fluoride ion with outer face and sodium ion with the inner face of nanostructures interact simultaneously and in the second model, positions of ions were exchanged to study the effect of this on binding energies of the ternary complexes. Results indicate that binding energies in the first model are larger than the second one by an average 1.90 kcal mol-1. Indeed, a decrease of electron delocalization/increase of electron delocalization in the central ring of nanostructures is good for the interaction of ions with the outer face of them in the first model/second model. Results propose that graphene-based nanostructures due to unique structural and electronic properties are good beds for interactions of ions and can be considered as sodium-ion batteries. Also, the growth of curvature of nanostructures leads to better functionalization of their outer faces through ions with a negative charge and can optimize their performance as ion batteries using changing electronic cloud densities of their walls.


Main Subjects

[1] Geim A. K., Graphene: Status and Prospects, Science, 324: 1530–1534 (2009).
[2] De Volder  M. F. L., Tawfick  S. H., Baughman  R. H., Hart  A. J.; Carbon Nanotubes: Present and Future Commercial Applications, Science, 339: 535–539 (2013).
[3] Karousis N., Suarez-Martinez I., Ewels C.P., Tagmatarchis N., Structure, Properties, Functionalization, and Applications of Carbon Nanohorns, Chemical Review.(CR), 116: 4850–4883 (2016).
[4] Liu J., Ohta S.I., Sonoda A., Yamadaa M., Yamamotoa M., Nittab N., Muratab K., Tabataa Y., Preparation of PEG-Conjugated Fullerene Containing Gd3+Ions for Photodynamic Therapy, Journal of Control Release.(JCR), 117: 104–110 (2007).
[5] Prato M., Kostarelos K., Bianco A., Functionalized Carbon Nanotubes in Drug Design and Discovery, Accounts of Chemical Research.(ACR), 41: 60–68 (2008).
[6] Murakami T., Sawada H., Tamura G., Yudasaka M., Iijima S., Tsuchida K., Water-Dispersed Single-Wall Carbon Nanohorns as Drug Carriers for Local Cancer Chemotherapy, Nanomedicine, 3: 453–463 (2008).
[7] Langereis S., de Lussanet Q.G., van Genderen M.H.P., Backes W.H., Meijer E.W., Multivalent Contrast Agents Based on Gadolinium−Diethylenetriaminepentaacetic Acid-Terminated Poly(propylene imine) Dendrimers for Magnetic Resonance Imaging, Macromolecule, 37: 3084–3091 (2004).
[8] Gan Y., Sun L., Banhart F., One‐ and Two‐Dimensional Diffusion of Metal Atoms in Graphene, Small, 4: 587–591 (2008).
[9] اسلامی، بهنام؛ احسانی نمین، پروین؛ قاسمی، اسماعیل؛ عزیزی، حامد؛ کرابی، محمد؛ بررسی جذب یون کادمیم ازمحلول آبی با استفاده از نانوکامپوزیت بر پایه کیتوسان/ نانو صفحه­های گرافن اصالح شده با تری اتیل آمین، نشریه شیمی و مهندسی شیمی ایران، (3) 36: 115 تا 125 (1396).
[10] Krasheninnikov A.V., Lehtinen P.O., Foster A.S., Pyykkö P., Nieminen R.M,. Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism, Physical Review Letters. (PRL), 102: Article No. 126807 (2009).
[11] Abe S., Watari  F., Takada  T., Tachikawa  H., A DFT and MD Study on the Interaction of Carbon Nano-Materials with Metal Ions, Molecular Crystals and Liquid Crystals.(MCLC), 505: 51–58 (2009).
[12] Marquez, A., Molecular Dynamics Studies of Combined Carbon/Electrolyte/Lithium-Metal Oxide Interfaces, Materials Chemistry and Physics (MCP), 104: 199–209 (2007).
[13] Wang G.; Shen X.P.; Yao J., Park J., Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries, Carbon, 47: 2049–2053 (2009).
[14] Chan Y., Hill J.M., Modelling Interaction of Atoms and Ions with Graphene, Micro & Nano Letters.(MNL), 5: 247–250 (2010).
[15] Mohammadzadeh L., Quaino P., Schmickler W., Interactions of Anions and Cations in Carbon Nanotubes, Faraday Discuss.(FD), 193: 415-426 (2016).
[16] Pham T.A., Golam Mortuza S. M., Wood B.C., Lau E.Y., Ogitsu T., Buchsbaum S.F., Siwy Z. S., Fornasiero F., Schwegler E., Salt Solutions in Carbon Nanotubes: The Role of Cation−π Interactions, Journal of Physical Chemistry C. (JPCC), 120: 7332–7338 (2016).
[17] Williams C.D.; Dix J., Troisi A., Carbone P., Effective Polarization in Pairwise Potentials at the Graphene–Electrolyte Interface, Journal of Physical Chemistry Letters.(JPCL), 8: 703–708 (2017).
[18] Radovic I., BIibic N., Miskovic Z.L., Interactions of Ions with Graphene, Publications - Astronomical Observatory of Belgrade.(PAOB), 89: 85-85 (2010).
[19] Cai X., Lai L., Shen Z., Lin J., Graphene and Graphene-Based Composites as Li-Ion Battery Electrode Materials and Their Application in Full Cells, Journal of Materials Chemistry A.(JMCA), 5:15423-15446 (2017).
[20] Lian P., Zhu X., Liang S., Li Z., Yang W., Wang H., Large Reversible Capacity of High Quality Graphene Sheets as an Anode Material for Lithium-Ion Batteries, Electrochim. Acta. (EA), 55: 3909–3914 (2010).
[21] Wu Z.S., Ren W., Xu L., Cheng H. M., Doped Graphene Sheets as Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries, ACS Nano.(ACSN), 5: 5463–5471 (2011).
[22] Hassoun J., Bonaccorso F., Agostini M., Angelucci M., Betti M.G., Cingolani R., Gemmi M., Mariani C., Panero S., Pellegrini V., Scrosati B., An Advanced Lithium-Ion Battery Based
on a Graphene Anode and a Lithium Iron Phosphate Cathode
, Nano Letters.(NL), 14: 4901–4906 (2014).
[23] Wu S., Ge R., Lu M., Xu R., Zhang Z., Graphene-Based Nano-Materials for Lithium–Sulfur Battery and Sodium-Ion Battery, Nano Energy.(NE), 15: 379–405 (2015).
[24] Cheng Q., Okamoto Y., Tamura N., Tsuji M., Maruyama S., Matsuo Y., Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithium Ion Batteries, Scientific Reports.(SR), 41598: 14504-8 (2017).
[25] Huang L., Cheng J., Li X., Wang B., Electrode Nanomaterials for Room Temperature Sodium-Ion Batteries: A Review, Journal of Nanoscience and Nanotechnology.(JNN), 15: 6295-6307 (2015).
 [26] Hwang J., Myung S., Sun Y., Sodium-Ion Batteries: Present and Future, Chemical Society Reviews.(CSR), 46: 3529-3614 (2017).
[27] Nishi  M., Ohkubo T., Yamasaki M., Takagia H., Kuroda Y., Surplus Adsorption of Bromide Ion into π-Conjugated Carbon Nanospaces Assisted by Proton Coadsorption, Journal of Colloid and Interface Science.(JCIS), 508: 415-418 (2017).
[28] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A.,  Cheeseman J.R.,  Scalmani G.,  Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X.,  Hratchian H.P., Izmaylov A.F.,  Bloino J.,  Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K.,  Rendell A.,  Burant J.C.,  Iyengar S.S., Tomasi J.,  Cossi M.,  Rega N.,  Millam J.M.,  Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R.,  Stratmann R.E.,  Yazyev O.,  Austin A.J., Cammi R.,  Pomelli C.,  Ochterski J.W.,  Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian09 (Revision A.02), Gaussian, Inc., Wallingford CT., Gaussian 09, Gaussian, Inc., Wallingford, CT, Revision A.02(2009).
[30] Bader R.F.W., "Atoms in Molecules: A Quantum Theory", Oxford University Press, Oxford (1990).
[31] Schleyer P.V.R., Maerker C., Dransfeld A., Jiao H., Hommes N.J.R.V.E., Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe, Journal of American Chemical Society.(JACS), 118: 6317-6318 (1996).
[32] Chen Z., Wannere C.S., Corminboeuf C., Puchta R., Schleyer P.V.R., Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion, Journal of Chemical Reviews.(JCR), 105: 3842-3888 (2005).