Denitrative Functionalization of Nitroarenes

Document Type : Review Article

Authors

Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, I.R. IRAN

Abstract

Cross-coupling reactions employing transition metals as catalysts have become an important approach for the construction of C-C and C-heteroatom bonds. Traditionally, aryl halides have been used as one of the coupling partners in these kinds of reactions. However, these compounds are generally environmental pollutants and many of them are expensive. Thus, looking for safe and cheap alternatives for these compounds is of high interest from both laboratory and industry point of view. In recent years, nitroarenes have been reported to be active substrates in the cross-coupling reactions activated by some transition metals such as copper, palladium, or rhodium. Herein, the recent advances in cross-coupling reactions starting from nitroarenes has been reviewed.

Keywords

Main Subjects


[1] (a) Cornella J., Zarate C., Martin R., Metal-Catalyzed Activation of Ethers via C-O Bond Cleavage: A New Strategy for Molecular Diversity, Chem. Soc. Rev., 43: 8081-8097 (2014).
(b) Zhang C., Tang C., Jiao N., Recent Advances in Copper-Catalyzed Dehydrogenative Functionalization via a Single Electron Transfer (SET) Process, Chem. Soc. Rev., 41:3464-3484 (2012). (c) Ghaderi A., Iwasaki T., Fukuoka A., Terao J., Kambe N., Nickel-Catalyzed Coupling of Thiomethyl-Substituted 1,3-Benzothiazoles with Secondary Alkyl Grignard Reagents, Chem. Eur. J., 19: 2951-2955 (2013).
[2] (a) Monnier F., Taillefer M., Catalytic C-C, C-N, and C-O Ullmann-Type Coupling Reactions, Angew. Chem. Int. Ed., 48: 6954-6971 (2009). (b) Burgos C.H., Barder T.E., Huang X., Buchwald S.L., Significantly Improved Method for the Pd-Catalyzed Coupling of Phenols with Aryl Halides: Understanding Ligand Effects, Angew. Chem. Int. Ed., 45: 4321-4326 (2006). (c) Miyaura N., Yanagi T., Suzuki A., The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases, Synth. Commun., 11: 513-519 (1981). (d) Firouzabadi H., Iranpoor N., Ghaderi A., Ghavami M., Hoseini S. J., Palladium Nanoparticles Supported on Aminopropyl-Functionalized Clay as Efficient Catalysts for Phosphine-Free C-C Bond Formation via Mizoroki-Heck and Suzuki-Miyaura Reactions, Bull. Chem. Soc. Jpn., 84: 100-109 (2011).
[3] (a) Evano G., Blanchard N., Toumi M., Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis., Chem. Rev., 108: 3054-3131 (2008). (b) Carril M., SanMartin R., Dominguez E., Palladium and Copper-Catalysed Arylation Reactions in the Presence of Water, with a Focus on Carbon–Heteroatom Bond Formation., Chem. Soc. Rev., 37: 639-647 (2008). (c) Alonso D.A., Najera C., Oxime-Derived Palladacycles as Source of Palladium Nanoparticles, Chem Soc. Rev., 39: 2891-2902 (2010).
(d) Deraedt C., Astruc D., "Homeopathic" Palladium Nanoparticle Catalysis of Cross Carbon-Carbon Coupling Reactions, Acc. Chem. Res., 47: 494-503 (2014).
[4] (a) Rauser M., Ascheberg Ch., Niggemann M., Electrophilic Amination with Nitroarenes, Angew. Chem. Int. Ed., 129: 11728-11732 (2017). (b) Cheung, Ch. W., Ma. J., Hu. X., Manganese-Mediated Reductive Transamidation of Tertiary Amides with Nitroarenes, J. Am. Chem. Soc., 140: 6789-6792 (2018).
[5] Beck J.R., Nucleophilic Displacement of Aromatic Nitro Groups, Tetrahedron, 34: 2057-2068 (1978).
[6] N. Ono, "The Nitro Group in Organic Synthesis", John Wiley & Sons, New York, 2001, pp. 302–324.
[8] Mondal M., Bharadwaj S.K., Bora U., O-Arylation with Nitroarenes: Metal-Catalyzed and Metal-Free MethodologiesNew J. Chem., 39: 31-37 (2015).
[9] (a) Zhang J., Zhang Z., Wang Y., Zheng X., Wang Zh., Nano-CuO-Catalyzed Ullmann Coupling of Phenols with Aryl Halides Under Ligand-Free Conditions, Eur. J. Org. Chem., 5112–5116 (2008).
[10] Patch R. J., Searle L. L., Kim A. J., De D., Zhu X., Askari H. B., O’Neill J. C., Abad M. C., Rentzeperis D., Liu J., Kemmerer M., Lin L., Kasturi J., Geisler J.G., Lenhard J. M., Player M. R., Gaul M.D., Identification of Diaryl Ether-Based Ligands for Estrogen-Related Receptor as Potential Antidiabetic Agents, J. Med. Chem., 54: 788-808 (2011).
[11] Brogden R.N., Pinder R. M., Speight T. M., Avery G. S., Fenoprofen. A Review of its Pharmacological Properties and Therapeutic Efficacy in Rheumatic Diseases, Drugs., 13: 241-265 (1977).
[12] Deng H., Jung J.K., Liu T., Kuntz K.W., Snapper M.L., Hoveyda A.H., Total Synthesis of Anti-HIV Agent Chloropeptin I, J. Am. Chem. Soc., 125: 9032–9034 (2003).
[13]  Swapna K., Murthy S.N., Jyothi M.T., Nageswar Y.V.D., Recyclable Heterogeneous Copper Oxide on Alumina Catalyzed Coupling of Phenols and Alcohols with Aryl Halides under Ligand-Free Conditions, Org. Biomol. Chem., 9: 5978–5988 (2011).
[14] Maiti D., Buchwald S.L., Cu-Catalyzed Arylation of Phenols: Synthesis of Sterically Hindered and Heteroaryl Diaryl Ethers, J. Org. Chem., 75: 1791 –1794 (2010).
[15] Nicolaou K. C., Boddy C. N. C., Brase S., Winssinger N., Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics,Angew. Chem., Int. Ed., 38: 2096–2152 (1999).
[16] Bistri O., Corra A., Bolm C., Iron-Catalyzed C-O Cross-Couplings of Phenols with Aryl Iodides, Angew. Chem. Int. Ed., 47: 586 –588 (2008).
[17] Zheng X., Ding J., Chen J., Gao W., Liu M., Wu  H., The Coupling of Arylboronic Acids with Nitroarenes Catalyzed by Rhodium, Org. Lett., 13: 1726-1729 (2011).
[18] Zhang J., Chen J., Liu M., Zheng X., Ding J., Wu H., Ligand-Free Copper Catalyzed Coupling of Nitroarenes with Arylboronic Acid, Green Chem., 14: 912-916 (2012).
[19] Peng D., Yu A., Wang H., Wu Y., Chang J., A 2,2′-Bipyridine-Palladacycle Catalyzed the Coupling of Arylboronic Acids with Nitroarenes, Tetrahedron, 69: 6884-6889 (2013).
[20] Wang H., Yu A., Cao A., Chang J., Wu Y., First Palladium-Catalyzed Denitrated Coupling Reaction of Nitroarenes with PhenolsAppl. Organometal. Chem., 27: 611-614 (2013).
[21] Chen J., Wang X., Zheng X., Ding J., Liu M., Wu H., Ligand-Free Copper Catalyzed O-Arylation of Nitroarenes with Phenols, Tetrahedron, 68: 8905-8907 (2012).
[22] Sarkate A.P., Bahekar S.S., Wadhai V.M., Ghandge G.N., Wakte P.S., Shinde D.B., Microwave-Assisted Synthesis of Nonsymmetrical Aryl Ethers Using Nitroarenes, Synlett, 24: 1513-1516 (2013).
[23] Begum T., Mondal M., Borpuzari M.P., Kar R., Gogoi P.K., Bora U., Palladiumon-Carbon-Catalyzed Coupling of Nitroarenes with Phenol: Biaryl Ether Synthesis and Evidence of an Oxidative Addition-Promoted Mechanism, Eur. J. Org. Chem., 3244– 3248 (2017).
[26] Maity T., Bhunia S., Das S., Koner S., Heterogeneous O‒Arylation of Nitroarenes with Substituted Phenols over Copper Immobilized Mesoporous Silica Catalyst, RSC Adv., 6: 33380-33386 (2016).
[27] Leo P., Orcajo G.; Briones D., Calleja G., Sánchez M., Martínez F., A Recyclable Cu-MOF-74 Catalyst for the Ligand-Free O-Arylation Reaction of 4-Nitrobenzaldehyde and Phenol, Nanomaterials., 7: 149-163 (2017).
[28] (a) Ley S. V., Thomas A.W., Modern Synthetic Methods for Copper-Mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S Bond Formation, Angew. Chem. Int. Ed., 42: 5400–5449 (2003). (b) Kondo T., Mitsudo T.A.,Metal-Catalyzed Carbon-Sulfur Bond Formation, Chem. Rev., 100: 3205-3220 (2000).
[29] Liu L., Stelmach J. E., Natarajan S. R., Chen M. H., Singh S. B., Schwartz C. D., Fitzgerald C. E., O'Keefe S.J., Zaller D. M., Schmatz D. M., Doherty J. B., SAR of 3,4-Dihydropyrido[3,2-d]pyrimidone p38 Inhibitors, Bioorg. Med. Chem. Lett., 13: 3979–3982 (2003).
[30] Bahekar S. S., Sarkate, A. P., Wadhai, V. M., Wakte, P.S., Shinde D. B., CuI Catalyzed C-S Bond Formation by Using Nitroarenes, Catal. Commun., 41: 123-125 (2013).
[33] Tian, H.; Cao, A.; Qiao, L.; Yu, A.; Chang, J.; Wu, Y. First Palladium-Catalyzed Denitrated Coupling of Nitroarenes with Sulfonates, Tetrahedron, 70: 9107-9112 (2014).
[35] (a) Surry D.S., Buchwald S.L., Biaryl Phosphane Ligands in Palladium‐Catalyzed Amination, Angew. Chem. Int. Ed., 47: 6338-6361 (2008). (b) Hartwig J. F., Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides, Acc. Chem. Res., 41:1534-1544 (2008). (c) Louie J., Hartwig J.F., Palladium-Catalyzed Synthesis of Arylamines From Aryl Halides. Mechanistic Studies Lead to Coupling in the Absence of Tin Reagents, Tetrahedron Lett., 36: 3609-3612 (1995).
[36] Inoue F., Kashihara M., Yadav R., Nakao Y., Buchwald–Hartwig Amination of Nitroarenes, Angew. Chem. Int. Ed., 56: 13307–13309 (2017).
[37] a)  Nicolaou K. C., Boddy C.N.C., Bräse S., Winssinger N., Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics, Angew. Chem., 111: 2230–2287 (1999).
[38] Roncali J., Conjugated Poly(thiophenes): Synthesis, Functionalization, and Applications, Chem. Rev., 92: 711–738 (1992).
[41] Yadav M.R.,  Nagaoka M., Kashihara M.,  Zhong R.L., Miyazaki T., Sakaki Sh., Nakao Y., The Suzuki−Miyaura Coupling of Nitroarenes, J. Am. Chem. Soc., 139: 9423−9426 (2017).
[42] (a) Fors B. P., Buchwald S. L., Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics, J. Am. Chem. Soc., 131: 12898-12899 (2009). (b) Lu Y., Li Y., Zhang R., Jin  K., Duan C., Regioselective ortho-Nitration of N-Phenyl Carboxamides and Primary Anilines Using Bismuth Nitrate/Acetic Anhydride, Tetrahedron, 69: 9422-9427 (2013). (c) Fan Z., Ni J., Zhang A., Meta-Selective CAr–H Nitration of Arenes Through a Ru3(CO)12-Catalyzed ortho-Metalation Strategy, J. Am. Chem. Soc., 138: 8470-8475 (2016).
[43] (a) Lamson D. W., Ulrich P., Hutchins R. O., Aromatic Denitration with Borohydride. Nucleophilic Displacement of Nitrite by Hydride, J. Org. Chem., 38: 2928-2930 (1973).
(b) Fielden R., Meth-Cohn, O.; Suschitzky H., Syntheses of Heterocyclic Compounds. Part XXV. Action of Acid on N,N-Disubstituted o-Nitroanilines: Benzimidazole N-Oxide Formation and Nitro-Group Rearrangements,J. Chem. Soc. Perkin Trans., 1: 696-701 (1973).
[44] (a) Liu X., Li H.Q., Ye S., Liu Y.M., He, H.Y., Cao Y., Gold-Catalyzed Direct Hydrogenative Coupling of  Nitroarenes to Synthesize Aromatic Azo Compounds, Angew. Chem., Int. Ed., 53: 7624-7628 (2014).
[45] Kashihara M., Yadav M.R., Nakao Y., Reductive Denitration of Nitroarenes, Org. Lett., 20 : 1655–1658 (2018).
[46] Booth G., Nitro Compounds, Aromatic; Ullmanns Encyclopedia of Industrial Chemistry, Wiley-VCH, New York (2012).