Fabrication and Characterization of Poly (phenyl sulfone) Ultrafiltration Membrane by VIPS Method

Document Type : Research Article

Authors

1 Membrane Processes Research Laboratory (MPRL), Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. IRAN

2 Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. IRAN Technology

3 Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. IRAN

Abstract

In this paper, the effect of Vapor-Induced Phase Separation (VIPS) time on the morphology and performance of poly (phenyl sulfone) membranes was investigated. 14 wt.% dope solutions were employed for membrane fabrication. After casting the solution, the formed polymeric film was exposed to humid air for certain times to form a porous structure. Morphology and performance of membranes were characterized by Scanning Electron Microscopy (SEM), pore size distribution, pure water flux, and Bovine Serum Albumin (BSA) retention. Pore size distribution results showed that by an increase in VIPS time, the pore size of the membrane was increased, and SEM images showed that with increasing VIPS time, the thickness of the dense skin top layer decreased, also the surface of the membranes at first became smooth and then changed to rough. Moreover, by increasing the VIPS time, the pure water flux of the prepared membranes increased from 17.12 to 37.61 L/m².h. The performance of the fabricated membranes for retention of BSA indicated that with increasing the VIPS time, the retention of BSA decreased gradually from 71.3 to 52.3% but the flux increased more sharply from 6.94 to 17.36 L/m².h. Generally, vapor induced phase separation technique is an effective method that could be applied for fabricating membranes with different characteristics for different applications from one dope solution. If a membrane with antifouling features is required, low VIPS time should be applied and if a high flux membrane is desirable, high VIPS time should be employed.

Keywords

Main Subjects


[1] Hilal N., Ismail A.F., Wright C.J., "Membrane Fabrication": CRC Press, (215).
[2] Mulder M., "Basic Principles of Membrane Technology", 2nd ed.: Kluwer Academic Publishers, (1996).
[3] Baker R.W., "Membrane Technology and Applicatios", second ed.: John Wiley and Sons, Ltd, (2004).
[4] علوی، س.ع.، کارگری، ع.، کریمی، م.، سنایی پور، ح.، لاریجی، س.، اثر سرای ساخت بر شکل­شناسی غشای پلی­آکریلونیتریل میکروفرافیلترکردن و کاربرد آن در جداسازی پروتئین و چربی از شیر، مجله علوم و تگنولوژی پلیمر، (1)26: 63 تا 78 (1393).
[6] Zhang X., Chen Y., Konsowa A.H., Zhu X., Crittenden J.C., Evaluation of an Innovative Polyvinyl Chloride (PVC) Ultrafiltration Membrane for Wastewater Treatment, Sep. Purif. Tech., 70 (1): 71-78 (2009).
[7] Mark H.F., ”Polysulfones, Encyclopedia of Polymer Science and Technology", 3rd ed.: John Wiley and Sons, Inc., (2004).
[8] Darvishmanesh S., Jansen J.C., Tasselli F., Tocci E., Luis P., Degrève J., Drioli E., Van der Bruggen B., Novel Polyphenylsulfone Membrane for Potential Use In Solvent Nanofiltration, J. Membr. Sci., 379 (1-2): 60-68 (2011).
[10] Darvishmanesh S., Tasselli F., Jansen J.C., Tocci E., Bazzarelli F., Bernardo P., Luis P., Degréve J., Drioli E., Van der Bruggen B., Preparation of Solvent Stable Polyphenylsulfone Hollow Fiber Nanofiltration Membranes, J. Membr. Sci., 384 (1-2): 89-96 (2011).
[11] Tang Y., Widjojo N., Shi G.M., Chung T.-S., Weber M., Maletzko C., Development of Flat-Sheet Membranes For C1–C4 Alcohols Dehydration via Pervaporation from Sulfonated Polyphenylsulfone (sPPSU), J. Membr. Sci., 415-416: 686-695 (2012).
[13] Moideen K I., Isloor A.M., Garudachari B., Ismail A.F., The Effect of Glycine Betaine Additive on the PPSU/PSF Ultrafiltration Membrane Performance, Desal. Wat. Treat., 57(52): 24788-24798 (2016).
[14] Kiani S., Mousavi S.M., Shahtahmassebi N., Saljoughi E., Preparation and Characterization of Polyphenylsulfone Nanofibrous Membranes for the Potential Use in Liquid Filtration, Desal. Wat. Treat., 57(35): 16250-16259 (2016).
[15] Yong W.F., Lee Z.K., Chung T.-S., Weber M., Staudt C., Maletzko C., Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation, ChemSusChem, 9(15): 1-11 (2016).
[18] Feng Y., Han G., Chung T.-S., Weber M., Widjojo N., Maletzko C., Effects of Polyethylene Glycol on Membrane Formation and Properties of Hydrophilic Sulfonated Polyphenylenesulfone (sPPSU) Membranes, J. Membr. Sci., 531: 27-35 (2017).
[20] Su Y.S., Kuo C.Y., Wang D.M., Lai J.Y., Deratani A., Pochat C., Bouyer D., Interplay of Mass Transfer, Phase Separation, and Membrane Morphology in Vapor-Induced Phase SeparationJ. Membr. Sci., 308 (1-2): 17-28 (2009).
[21] Shekari R., Kargari A., "Preparation of a PVDF-Based Super-Hydrophobic Membrane for Membrane Distillation Applications", M.Sc Thesis, Amirkabir University of Technology (Mahshahr Campus),(2016).
[22] Chen G.-E., Li J.-F., Han L.-F., Xu Z.-L., Yu L.-Y., Preparation of Micro-Porous Polyethersulphone Hollow Fibre Membranes Using Non-Solvent Vapour-Induced Phase Separation, Iran. J. Polym. Sci. Tech., 19 (11): 863-873 (2010).
[23] Ghandashtani M.B., Ashtiani F.Z., Karimi M., Fouladitajar A., A Novel Approach to Fabricate High Performance Nano-SiO2 Embedded PES Membranes For Microfiltration of Oil-in-Water Emulsion, Appl. Surf. Sci., 349: 393-402 (2015).
[24] Fan H., Peng Y., Li Z., Chen P., Jiang Q., Wang S., Preparation and Characterization of Hydrophobic PVDF Membranes by Vapor-Induced Phase Separation and Application in Vacuum Membrane Distillation, J. Polym. Res., 20 (134): 1-15 (2013).
[26] Park H.C., Kim Y.P., Kim H.Y., Kang Y.S., Membrane Formation by Water Vapor Induced Phase Inversion, J. Membr. Sci., 156 (2): 169-178 (1999).
[27] Caquineau H., Menut P., Deratani A., Dupuy C., Influence of the Relative Humidity on Film Formation by Vapor Induced Phase Separation, Poly. Eng. Sci., 43 (4): 798-808 (2003).
[28] Sun H., Liu S., Ge B., Xing L., Chen H., Cellulose Nitrate Membrane Formation Via Phase Separation Induced by Penetration of Nonsolvent from Vapor Phase, J. Membr. Sci., 295 (1-2): 2-10 (2007).
[29] Vatanpour V., Madaeni S.S., Moradian R., Zinadini S., Astinchap B., Novel Antibifouling Nanofiltration Polyethersulfone Membrane Fabricated from Embedding TiO2 Coated Multiwalled Carbon Nanotubes, Sep. Purif. Tech., 90: 69-82 (2012).
[30] Otero J.A., Mazarrasa O., Villasante J., Silva V., Pradanos P., Calvo J.I., Hernàndez A., Three Independent Ways to Obtain Information on Pore Size Distributions of Nanofiltration Membranes, J. Membr. Sci., 309 (1-2): 17-27 (2008).
[31] Sinha M.K., Purkait M.K., Increase in Hydrophilicity of Polysulfone Membrane Using Polyethylene Glycol Methyl Ether, J. Membr. Sci., 437: 7-16 (2013).
[32] Zhao W., Huang J., Fang B., Nie S., Yi N., Su B., LI H., Zhao C., Modification of Polyethersulfone Membrane by Blending Semi-Interpenetrating Network Polymeric Nanoparticles, J. Membr. Sci., 369 (1-2): 258-266: (2011).
[33] Shen J.-n., Ruan H.-m., Wu L.-g., Gao C.-j., Preparation and Characterization of PES–SiO2 Organic-Inorganic Composite Ultrafiltration Membrane for Raw Water PretreatmentChem. Eng. J., 168 (3): 1272-1278: (2011).
[34] Tsai H.A., Kuo C.Y., Lin J.H., Wang D.M., Deratani A., Pochat-Bohatier C., Lee K.R., Lai J.Y., Morphology Control of Polysulfone Hollow Fiber Membranes Via Water Vapor Induced Phase Separation, J. Membr. Sci., 278 (1-2): 390-400 (2006).
[35] Gençal Y., Durmaz E.N., Çulfaz-Emecen P.Z., Preparation of Patterned Microfiltration Membranes and their Performance in Crossflow Yeast Filtration, J. Membr. Sci., 476: 224–233 (2015).
[36] Hilal N., Ismail A.F., Matsuura T., Oatley-Radcliffe D., "Membrane Characterization": Elsevier, (2017)
[37] Marino T., Blasi E., Tornaghi S., Nicolò E.D., Figoli A., Polyethersulfone Membranes Prepared with Rhodiasolv®Polarclean as Water Soluble Green Solvent, J. Membr. Sci., 549: 192-204 (2018).